Skip to main content
Log in

Influence of Oblique Angle Deposition on the Nano-structure and Characteristics of ZnO Thin Films Produced by Annealing of Zn Films

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Zinc oxide films were prepared using oblique angle deposition of Zn at four deposition angles of 0°, 30°, 45°, and 60° and subsequent annealing with the flow of oxygen. Structural characteristics of the films were obtained using atomic force microscopy and field emission scanning electron microscopy while their crystallography was investigated by x-ray diffraction analysis. The largest value of void fraction and the highest preferred orientation were obtained for the ZnO(101) diffraction line for the Zn film deposited at 45°. The former is explained in the published literature on the basis of rearrangement of atoms resulting from the diffusion or thermal vibration and the available crystallographic sites and surface energy on the substrate/growing film surface for relaxation of an adatom. Zn film anisotropy due to the bundling effect resulting from oblique angle deposition was examined by sheet resistivity measurements along x and y directions of the samples. Optical spectra of the samples were measured using both polarized light and unpolarized light from which optical constants were deduced. Both direct and indirect band gap energies were obtained and compared with the reported theoretical calculations. Our results are consistent with the experimental data in the literature; while they are larger than the theoretical reported values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Toledano, R.E. Galindo, M. Yuste, J.M. Albella, and O.S. Anchez, J. Phys. D: Appl. Phys. 46, 045306 (2013).

    Article  Google Scholar 

  2. A.K. Singh, Adv. Powder Technol. 21, 609 (2010).

    Article  Google Scholar 

  3. S.H. Mousavi, H. Haratizadeh, and H. Minaee, Opt. Commun. 284, 3558 (2011).

    Article  Google Scholar 

  4. Z.L. Wang, J. Phys. Condens. Matt. 16, R 289 (2004).

    Google Scholar 

  5. Y. Liu, A. Liu, W. Liu, Z. Hu, and Y. Sang, Appl. Surf. Sci. 257, 1263 (2010).

    Article  Google Scholar 

  6. R. Shi, P. Yang, S. Zhang, and X. Dong, Ceram. Int. 40, 3637 (2014).

    Article  Google Scholar 

  7. U. Ozgur, Y.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Dogan, V. Avrutin, S.J. Cho, and H. Morkoc, J. Appl. Phys. 98, 041301 (2005).

    Article  Google Scholar 

  8. E. Monroy, F. Omnes, and F. Calle, Semicond. Sci. Technol. 18, R33 (2003).

    Article  Google Scholar 

  9. S.D. Škapin, G. Dražič, and Z.O. Crnjak, Mater. Lett. 61, 2783 (2007).

    Article  Google Scholar 

  10. J.R. Anderso and G. Myers, J. Dent. Res. 45, 379 (1966).

    Article  Google Scholar 

  11. H.U. Lee, S.Y. Park, S.C. Lee, J.H. Seo, B. Son, H. Kim, H.J. Yun, G.W. Lee, S.M. Lee, B. Nam, J.W. Lee, Y.S. Huh, C. Jeon, H.J. Kim, and J. Lee, Appl. Catal B: Environ. 144, 83 (2014).

    Article  Google Scholar 

  12. S. Talam, S.R. Karumuri, and N. Gunnam, ISRN Nanotechnology, 372505 (2012). doi:10.5402/2012/372505.

  13. H. Morkoç and U. Ozgur, Zinc Oxide: Fundamentals, Materials and Device Technology (Weinheim, Germany: Wiley, 2008).

  14. C. Jagadish and S. Pearton, eds., Zinc Oxide Bulk, Thin Films and Nanostructures (Netherland: Elsevier, 2011).

  15. P.X. Gao, Y. Ding, W.J. Mai, L.H. William, and Z.L. Wang, Science 309, 1700 (2005).

    Article  Google Scholar 

  16. X.Y. Kong, Y. Ding, R. Yang, and Z.L. Wang, Science 303, 1348 (2004).

    Article  Google Scholar 

  17. Z.L. Wang, Mater. Today 7, 26 (2004).

    Article  Google Scholar 

  18. K. Khojier, H. Savaloni, and E. Amani, Appl. Surf. Sci. 289, 564 (2014).

    Article  Google Scholar 

  19. K. Khojier and H. Savaloni, J. Elect. Mater. (2015). doi:10.1007/s11664-015-3833-2.

    Google Scholar 

  20. S. Mukhtar, A. Asadov, and W. Gao, Thin Solid Films 520, 3453 (2012).

    Article  Google Scholar 

  21. J.P. Singh, T. Karabacak, D.-X. Ye, and D.-L. Liup, J. Vac. Sci. Technol. B 23, 2114–2121 (2005). doi:10.1116/1.2052747.

    Article  Google Scholar 

  22. L. Abelmann and C. Lodder, Thin Solid Films 305, 1 (1997).

    Article  Google Scholar 

  23. J. Takadoum, ed., Nanomaterials and Surface Engineering (Wiley, 2013). doi:10.1002/9781118618523.ch11.

  24. A. Siabi-Garjan, H. Savaloni, J. Beik-Mohammadi, and A.R. Grayeli-Korpi, Philos. Magn. 93, 3527 (2013).

    Article  Google Scholar 

  25. F.M. Smits, Bell Syst. Technol. J. 37, 711 (1958).

    Article  Google Scholar 

  26. J.R. Taylor, An Introduction to Error Analysis, 2nd ed. (Sausalito: University Science Books, 1997).

    Google Scholar 

  27. H. Savaloni, F. Babaei, S. Song, and F. Placido, Vacuum 85, 776 (2011).

    Article  Google Scholar 

  28. Y. Ueda, W. Takakura, and A. Yamada, J. Magn. Magn. Mater. 239, 45 (2002).

    Article  Google Scholar 

  29. W. Takakura, S. Ikeda, and Y. Ueda, Mater. Trans. 42, 881 (2001).

    Article  Google Scholar 

  30. H. Savaloni, M. Gholipour-Shahraki, and M.A. Player, J. Phys. D Appl. Phys. 39, 2231 (2006).

    Article  Google Scholar 

  31. F.H. Chung and D.K. Smith, Industrial Applications of X-ray Diffraction (New York: Marcel Dekker, 1999), p. 798.

    Google Scholar 

  32. H. Savaloni and R. Babaei, Appl. Surf. Sci. 280, 439 (2013).

    Article  Google Scholar 

  33. S. Mukherjee and D. Gall, Thin Solid Films 527, 158 (2013).

    Article  Google Scholar 

  34. H. Savaloni and M. Gholipour-Shahraki, Nanotechnology 15, 311 (2004).

    Article  Google Scholar 

  35. I.S. Yahia, A.A.M. Farag, M. Cavas, and F. Yakuphanoglu, Superlattices Microstruct. 53, 63 (2013).

    Article  Google Scholar 

  36. A. Sinaoui, I. Trabelsi, F. Chaffar-Akkar, F. Aousgi, and M. Kanzari, Int. J. Thin Film Sci. Technol. 3, 19 (2014).

    Article  Google Scholar 

  37. H. Kangarlou, M.M. Aghagonbad, and Z. Barjisi, Optick 124, 107 (2013).

    Google Scholar 

  38. A. Schleife, F. Fuchs, J. Furthmuller, and F. Bechstedt, Phys. Rev. B 73, 245212 (2006).

    Article  Google Scholar 

  39. Ü. ÖzgÜr, Y.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, and H. Morkoç, J. Appl. Phys. 98, 041301 (2005). doi:10.1063/1.1992666.

    Article  Google Scholar 

  40. D.A.G. Bruggeman, Ann. Phys. 24, 636 (1935).

    Article  Google Scholar 

  41. H. Savaloni, F. Babaei, S. Song, and F. Placido, Appl. Surf. Sci. 255, 8041 (2009).

    Article  Google Scholar 

  42. R. Rosi and D.W. Lynch, Phys. Rev. B 5, 3883 (1972).

    Article  Google Scholar 

  43. A. Siabi-Garjan, H. Savaloni, F. Abdi, A. Ghaffal, and F. Placido, Phys. Scr. 87, 055705 (2013).

    Article  Google Scholar 

  44. A. Lakhtakia and R. Messier, Sculptured Thin Films, Nanoengineered Morphology and Optics (Bellingham, WA: SPIE, 2005).

    Book  Google Scholar 

  45. F. Babaei and H. Savaloni, Opt. Commun. 278, 221 (2007).

    Article  Google Scholar 

  46. F. Babaei and H. Savaloni, Opt. Commun. 278, 321 (2007).

    Article  Google Scholar 

  47. A. Lakhtakia, Microw. Opt. Technol. Lett. 24, 239 (2000).

    Article  Google Scholar 

  48. J.A. Sherwin, A. Lakhtakia, and B. Michel, Opt. Commun. 178, 267 (2000).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hadi Savaloni.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Savaloni, H., Abbaszadeh, N. Influence of Oblique Angle Deposition on the Nano-structure and Characteristics of ZnO Thin Films Produced by Annealing of Zn Films. J. Electron. Mater. 45, 3343–3355 (2016). https://doi.org/10.1007/s11664-016-4510-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-4510-9

Keywords

Navigation