Skip to main content
Log in

Low-Concentration NO2 Gas Sensor Based on HfO2 Thin Films Irradiated by Ultraviolet Light

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In this work, we investigate the gas-sensing properties of HfO2 thin films enhanced by ultraviolet (UV) light irradiation. The films were deposited on silicon substrate by atomic layer deposition (ALD) and annealed at 800°C. X-ray diffraction (XRD) and atomic force microscopy (AFM) were used for characterization of the samples, which revealed that the degree of crystallinity and electrical properties of the HfO2 thin films were affected by the annealing temperature. Different film thicknesses (20 nm and 10 nm) were used for gas-sensing measurements. The gas-sensing properties of the films were affected by the UV irradiation time, with improvements in sensor properties observed for samples with more than 30 min of irradiation. The maximum response was found for the 10-nm sensor annealed at 800°C. Moreover, a linear dependence on NO2 concentration was observed for the response, suggesting that the sensing layer is highly suitable for detecting NO2 gas concentrations as low as 1 ppm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. L. Talazac, J. Brunet, V. Battut, J.P. Blanc, A. Pauly, J.P. Germain, S. Pellier, and C. Soulier, Sens. Actuators B (2001). doi:10.1016/S0925-4005(01)00579-2.

    Google Scholar 

  2. M. Choudhary, V.N. Mishra, and R. Dwivedi, J. Electron. Mater. (2013). doi:10.1007/s11664-013-2663-3.

    Google Scholar 

  3. R. Yoo, S. Cho, M.-J. Song, and W. Lee, Sens. Actuators B (2015). doi:10.1016/j.snb.2015.06.076.

    Google Scholar 

  4. X. Li, X. Li, J. Wang, and S. Lin, Sens. Actuators B (2015). doi:10.1016/j.snb.2015.05.031.

    Google Scholar 

  5. S.M.A. Durrani and M.F. Al-Kuhaili, Mater. Chem. Phys. (2008). doi:10.1016/j.matchemphys.2007.10.034.

    Google Scholar 

  6. P.B. Patil, S.S. Mali, V.V. Kondalkar, K.V. Khot, R.M. Mane, C.K. Hong, P.S. Patil, J.H. Kim, and P.N. Bhosale, J. Mater. Sci: Mater. Electron. (2015). doi:10.1016/j.electacta.2014.07.149.

    Google Scholar 

  7. V.V. Kondalkar, S.S. Mali, N.B. Pawar, R.M. Mane, S. Choudhury, C.K. Hong, P.S. Patil, S.R. Patil, P.N. Bhosale, and J.H. Kimf, Electrochim. Acta (2014). doi:10.1007/s10854-015-3191-0.

    Google Scholar 

  8. S. Capone, G. Leo, R. Rella, P. Siciliano, L. Vasanelli, M. Alvisi, L. Mirenghi, and A. Rizzo, J. Vac. Sci. Technol. A (1998). doi:10.1116/1.580999.

    Google Scholar 

  9. M. Kumar, B. Tekcan, and A.K. Okyay, Curr. Appl. Phys. (2014). doi:10.1016/j.cap.2014.10.001.

    Google Scholar 

  10. I.J. Kim, S.D. Han, C.H. Han, J. Gwak, H.D. Lee, and J.S. Wang, Sensors (2006). doi:10.3390/s6050526.

    Google Scholar 

  11. N. Coppedè, M. Villani, R. Mosca, S. Iannotta, A. Zappettini, and D. Calestani, Sensors (2013). doi:10.3390/s130303445.

    Google Scholar 

  12. G. Choi, L. Satyanarayana, and J. Park, Appl. Phys. Lett. (2006). doi:10.1016/j.apsusc.2005.09.069.

    Google Scholar 

  13. X. Du and S.M. George, Sens. Actuators B (2008). doi:10.1016/j.snb.2008.08.015.

    Google Scholar 

  14. H. Xie, K. Wang, Z. Zhang, X. Zhao, F. Liu, and H. Mu, RSC Adv. (2015). doi:10.1039/C5RA03752B.

    Google Scholar 

  15. T. Xie, N. Sullivan, K. Steffens, B. Wen, G. Liu, R. Debnath, A. Davydov, R. Gomez, and A. Motayed, J. Alloys Compd. (2015). doi:10.1016/j.jallcom.2015.09.021.

    Google Scholar 

  16. A. Avila-Garcıa and M. Garcia-Hipolito, Sens. Actuators B (2008). doi:10.1016/j.snb.2008.02.031.

    Google Scholar 

  17. I. Karaduman, M. Demir, D.E. Yıldız, and S. Acar, Phys. Scr. (2015). doi:10.1088/0031-8949/90/5/055802.

    Google Scholar 

  18. T.-F. Chang, C.-F. Huang, T.-Y. Yang, C.-W. Chiu, T.-Y. Huang, K.-Y. Lee, and F. Zhao, Solid-State Electron. (2015). doi:10.1016/j.sse.2014.11.024.

    Google Scholar 

  19. J.S. Liu, Y. Geng, L. Chen, Q.Q. Sun, P. Zhou, H.L. Lu, and D.W. Zhan, Thin Solid Films (2013). doi:10.1016/j.tsf.2012.03.066.

    Google Scholar 

  20. J. Niistö, M. Mantymaki, K. Kukli, L. Costelle, E. Puukilainen, M. Ritala, and M. Leskela, J Cryst Growth (2010). doi:10.1016/j.jcrysgro.2009.10.028.

    Google Scholar 

  21. D.M. Hausmann and R.G. Gordon, J. Cryst. Growth (2003). doi:10.1016/S0022-0248(02)02133-4.

    Google Scholar 

  22. Z. He, W. Wu, H. Xu, J. Zhang, and Y. Tang, Vacuum (2006). doi:10.1016/j.vacuum.2006.02.003.

    Google Scholar 

  23. J. Zhai, L.W.D. Wang, H. Li, Y. Zhang, D.Q. He, T. Xie, and A.C.S. Appl, Mater. Interfaces (2011). doi:10.1021/am200008y.

    Google Scholar 

  24. B.-R. Huang, S.-C. Hung, C.-Y. Lin, and Y.-J. Chen, J Mater Sci: Mater Electron (2014). doi:10.1007/s10854-013-1602-7.

    Google Scholar 

  25. Y.-L. Lee, C.-Y. Sheu, and R.-H. Hsiao, Sens. Actuators B (2004). doi:10.1016/j.snb.2003.11.024.

    Google Scholar 

  26. J.F. Chang, H.H. Kuo, I.C. Leu, and M.H. Hon, Sens. Actuators B (2002). doi:10.1016/S0925-4005(02)00034-5.

    Google Scholar 

  27. M.-S. Kim, Y.-D. Ko, M. Yun, J.-H. Hong, M.-C. Jeong, J.-M. Myoung, and I. Yun, Mater. Sci. Eng. B (2005). doi:10.1016/j.mseb.2005.06.012.

    Google Scholar 

  28. B.S. Sharma and M. Madou, Philos. Trans. R. Soc. A (2012). doi:10.1098/rsta.2011.0506.

    Google Scholar 

  29. L.F. Aval, S.M. Elahi, E. Darabi, and S.A. Sebt, Sens. Actuators B (2015). doi:10.1016/j.snb.2015.04.039.

    Google Scholar 

  30. N.V. Toan, N.V. Chien, N.V. Duy, H.S. Hong, H. Nguyen, N.D. Hoa, and N.V. Hie, J. Hazar. Mater. (2016). doi:10.1016/j.jhazmat.2015.09.013.

    Google Scholar 

  31. J.H. Yu, H.J. Yang, H.S. Mo, T.S. Kim, T.S. Jeong, C.J. Youn, and K.J. Hong, J. Electron. Mater. (2013). doi:10.1007/s11664-012-2462-2.

    Google Scholar 

  32. R.J. Oweis, B.A. Albiss, M.I. Al-Widyan, and M.-A. Al-Akhras, J Electron Mater. (2014). doi:10.1007/s11664-014-3274-3.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irmak Karaduman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karaduman, I., Barin, Ö., Özer, M. et al. Low-Concentration NO2 Gas Sensor Based on HfO2 Thin Films Irradiated by Ultraviolet Light. J. Electron. Mater. 45, 3914–3920 (2016). https://doi.org/10.1007/s11664-016-4480-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-4480-y

Keywords

Navigation