Skip to main content
Log in

Semi-rechargeable Aluminum–Air Battery with a TiO2 Internal Layer with Plain Salt Water as an Electrolyte

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

To develop a semi-rechargeable aluminum–air battery, we attempted to insert various kinds of ceramic oxides between an aqueous NaCl electrolyte and an aluminum anode. From cyclic voltammetry experiments, we found that some of the ceramic oxide materials underwent an oxidation–reduction reaction, which indicates the occurrence of a faradaic electrochemical reaction. Using a TiO2 film as an internal layer, we successfully prepared an aluminum–air battery with secondary battery behavior. However, cell impedance increased as the charge/discharge reactions proceeded probably because of accumulation of byproducts in the cell components and the air cathode. Results of quantum calculations and x-ray photoelectron spectroscopy suggest the possibility of developing an aluminum rechargeable battery using TiO2 as an internal layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Armand and J.-M. Tarascon, Nature 451, 652 (2008).

    Article  Google Scholar 

  2. P. Kichambare, J. Kumar, S. Rodrigues, and B. Kumar, J. Power Sources 196, 3310 (2011).

    Article  Google Scholar 

  3. F.W.T. Goh, Z. Liu, X. Ge, Y. Zong, G. Du, and T.S.A. Hor, Electrochim. Acta 114, 598 (2013).

    Article  Google Scholar 

  4. G. Girishkumar, B. McCloskey, A. Luntz, S. Swanson, and W. Wilcke, J. Phys. Chem. Lett. 1, 2193 (2010).

    Article  Google Scholar 

  5. F. Wagner, B. Lakshmanan, and M. Mathias, J. Phys. Chem. Lett. 1, 2204 (2010).

    Article  Google Scholar 

  6. S. Zaromb, J. Electrochem. Soc. 109, 1125 (1962).

    Article  Google Scholar 

  7. L. Bocksite, D. Trevethan, and S. Zaromb, J. Electrochem. Soc. 110, 267 (1963).

    Article  Google Scholar 

  8. C.D.S. Tuck, J.A. Hunter, and G.M. Scamans, J. Electrochem. Soc. 134, 2970 (1987).

    Article  Google Scholar 

  9. D.R. Egan, D.L.C. Ponce, R.J.K. Wood, R.I. Jones, K.R. Stokes, and F.C. Walsh, J. Power Sources 236, 293 (2013).

    Article  Google Scholar 

  10. S. Abedin and A. Saleh, J. Appl. Electrochem. 34, 331 (2004).

    Article  Google Scholar 

  11. M. Krishnan and N. Subramanyan, Corros. Sci. 17, 893 (1977).

    Article  Google Scholar 

  12. M. Paramasivam and S. Iyer, J. Appl. Electrochem. 31, 115 (2001).

    Article  Google Scholar 

  13. D. Macdonald and C. English, J. Appl. Electrochem. 20, 405 (1990).

    Article  Google Scholar 

  14. H. Shao, J. Wang, Z. Zhang, J. Zhang, and C. Cao, Mater. Chem. Phys. 77, 305 (2002).

    Article  Google Scholar 

  15. Y. Ein-Eli, M. Auinat, and D. Starrosvetsky, J. Power Sources 114, 330 (2003).

    Article  Google Scholar 

  16. A. Maayta and N. Al-Rawashdeh, Corros. Sci. 46, 1129 (2004).

    Article  Google Scholar 

  17. A. Mukherjee and I. Basumallick, J. Power Sources 58, 183 (1996).

    Article  Google Scholar 

  18. T. Hibino, K. Kobayashi, and M. Nagao, J. Mater. Chem. A 1, 14844 (2013).

    Article  Google Scholar 

  19. R. Mori, RSC Adv. 3, 11547 (2013).

    Article  Google Scholar 

  20. R. Mori, RSC Adv. 4, 1982 (2014).

    Article  Google Scholar 

  21. R. Mori, RSC Adv. 4, 30346 (2014).

    Article  Google Scholar 

  22. R. Mori, J. Electrochem. Soc. 162, 288 (2015).

    Article  Google Scholar 

  23. R. Mori, J. Appl. Electrochem. 45, 821 (2015).

    Article  Google Scholar 

  24. P. Periasamy, B.R. Babu, and S.V. Iyer, J. Power Sources 63, 79 (1996).

    Article  Google Scholar 

  25. X. Zhang, X. Lu, Y. Shen, J. Han, L. Yuan, L. Gong, Z. Xu, X. Bai, M. Wei, Y. Tong, Y. Gao, J. Chen, J. Zhou, and Z.L. Wang, Chem. Commun. 47, 5804 (2011).

    Article  Google Scholar 

  26. J. Peng, G. Li, H. Chen, D. Wang, X. Jin, and G.Z. Chen, J. Electrochem. Soc. 157, F1 (2010).

    Article  Google Scholar 

  27. S. Liu, J.J. Hu, N.F. Yan, G.L. Pan, G.R. Li, and X.P. Gao, Energy Environ. Sci. 5, 9743 (2012).

    Article  Google Scholar 

  28. Y.J. He, J.F. Peng, W. Chu, Y.Z. Li, and D.G. Tong, J. Mater. Chem. A 2, 1721 (2012).

    Article  Google Scholar 

  29. M. Nestoridi, D. Pletcher, R. Wood, S. Wang, R. Jones, K. Stokes, and I. Wilcock, J. Power Sources 178, 445 (2008).

    Article  Google Scholar 

  30. A.A. Mohamad, Corrosion Sci. 50, 3475 (2008).

    Article  Google Scholar 

  31. T. Jiang, M.J. Chollier Brym, G. Dube, A. Lasia, and G.M. Brisard, Surf. Coat. Technol. 201, 1 (2006).

    Article  Google Scholar 

  32. Q.X. Liu, S.Z.E. Abedin, and F. Endres, Surf. Coat. Technol. 201, 1352 (2006).

    Article  Google Scholar 

  33. S.Z.E. Abedin, P. Giridhar, P. Schwab, and F. Endres, Electrochem. Commun. 12, 1084 (2010).

    Article  Google Scholar 

  34. H. Yoshioka, H. Mieda, T. Funahashi, A. Mineshige, T. Yazawa, and R. Mori, J. Eur. Ceram. Soc. 34, 373 (2014).

    Article  Google Scholar 

  35. H.G. Oliveira, D.C. Nery, and C. Longo, Appl. Catal. B 93, 205 (2010).

    Article  Google Scholar 

  36. M. Choi, Y. Lee, S. Song, and K. Kim, Electrochim. Acta 55, 5975 (2010).

    Article  Google Scholar 

  37. G. Kim, C. Jo, W. Kim, J. Chun, S. Yoon, J. Lee, and W. Choi, Energy Environ. Sci. 6, 2932 (2013).

    Article  Google Scholar 

  38. Y. Ren and P.G. Bruce, Angew. Chem. Int. Ed. 51, 2164 (2012).

    Article  Google Scholar 

  39. N. Kheirabadi and A. Shafiekhani, J. Appl. Phys. 112, 124323 (2012).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryohei Mori.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mori, R. Semi-rechargeable Aluminum–Air Battery with a TiO2 Internal Layer with Plain Salt Water as an Electrolyte. J. Electron. Mater. 45, 3375–3382 (2016). https://doi.org/10.1007/s11664-016-4467-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-4467-8

Keywords

Navigation