Skip to main content
Log in

Porous Anatase TiO2 Thin Films for NH3 Vapour Sensing

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Anatase titanium dioxide (TiO2) thin films were deposited onto cleaned glass substrates by a direct current (DC) reactive magnetron sputtering technique for different deposition times from 10 min to 40 min, which resulted in films of different thicknesses. Characterization techniques, such as x-ray diffraction (XRD) and field emission-scanning electron microscopy (FE-SEM) were used to characterize the structural and morphological properties of the TiO2 thin films. XRD patterns showed the formation of (101) crystal anatase facets. The grain size values of the film increased with increased deposition time, and the films deposited at 40 min exhibited a porous structure. Anatase TiO2 thin films exhibited excellent sensing response, fast response and recovery time, as well as good stability and selectivity towards ammonia (NH3). The enhanced NH3 sensing behavior of anatase TiO2 films is attributed to the porous morphology and oxygen vacancies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Y. Zilberman, Y. Chen, and S.R. Sonkusale, Sens. Actuators, B 202, 976 (2014).

    Article  Google Scholar 

  2. Y. Jia, C. Yan, H. Yu, L. Chen, and F. Dong, Sens. Actuators B203, 459 (2014).

    Article  Google Scholar 

  3. G.N. Dar, A. Umar, S.A. Zaidi, S. Baskoutas, S.W. Hwang, M. Abaker, A. Al-Hajry, and S.A. Al-Sayari, Talanta 89, 155 (2012).

    Article  Google Scholar 

  4. S.A. Krutovertsev, S.I. Sorokin, A.V. Zorin, Y.A. Letuchy, and O.Y. Antonova, Sens. Actuators B7, 492 (1992).

    Article  Google Scholar 

  5. S. Sharma, S. Hussain, S. Singh, and S.S. Islam, Sens. Actuators B194, 213 (2014).

    Article  Google Scholar 

  6. A.K. Singh, M.A. Uddin, J.T. Tolson, H. Maire-Afeli, N. Sbrockey, G.S. Tompa, M.G. Spencer, T. Vogt, T.S. Sudarshan, and G. Koley, Appl. Phys. Lett. 102, 043101 (2013).

    Article  Google Scholar 

  7. A. Singh, M.A. Uddin, T. Sudarshan, and G. Koley, Small 10, 1555 (2014).

    Article  Google Scholar 

  8. Y.-F. Sun, S.-B. Liu, F.-L. Meng, J.-Y. Liu, Z. Jin, L.-T. Kong, and J.-H. Liu, Sensors 12, 2610 (2012).

    Article  Google Scholar 

  9. M.E. Franke, T.J. Koplin, and U. Simon, Small 2, 36 (2006).

    Article  Google Scholar 

  10. W. Ong, L. Tan, S. Chai, and S. Yong, Nanoscale 6, 1946 (2014).

    Article  Google Scholar 

  11. P. Dhivya and M. Sridharan, J. Electron. Mater. 43, 3211 (2014).

    Article  Google Scholar 

  12. D.R. Patil, L.A. Patil, and P.P. Patil, Sens. Actuators B 126, 368 (2007).

    Article  Google Scholar 

  13. U.V. Patil, N.S. Ramgir, N. Karmakar, A. Bhogale, A.K. Debnath, D.K. Aswal, S.K. Gupta, and D.C. Kothari, Appl. Surf. Sci. 339, 69 (2015).

    Article  Google Scholar 

  14. S. Mun, Y. Chen, and J. Kim, Sens. Actuators, B 171–172, 1186 (2012).

    Article  Google Scholar 

  15. S.G. Wang, Q. Zhang, D.J. Yang, P.J. Sellin, and G.F. Zhong, Diam. Relat. Mater. 13, 1327 (2004).

    Article  Google Scholar 

  16. P. Dhivya, A.K. Prasad, and M. Sridharan, J. Alloys Compd. 620, 109 (2015).

    Article  Google Scholar 

  17. P. Dhivya, A.K. Prasad, and M. Sridharan, Ceram. Int. 40, 409 (2014).

    Article  Google Scholar 

  18. T. Bora, H. Fallah, M. Chaudhari, and T. Apiwattanadej, Sens. Actuators, B 202, 543 (2014).

    Article  Google Scholar 

  19. P. Dhivya, A.K. Prasad, and M. Sridharan, J. Solid State Chem. 214, 24 (2014).

    Article  Google Scholar 

  20. M. Sharma and R.M. Mehra, Appl. Surf. Sci. 255, 2527 (2008).

    Article  Google Scholar 

  21. M.M.S. Muthukumaran, J. Mater. Sci.: Mater. Electron. 24, 2277 (2013).

    Google Scholar 

  22. P. Dhivya and M. Sridharan, International Conference on Advanced Nanomaterials and Emerging Engineering Technologies (2013), pp. 547–553.

  23. Z. Ting, Y. Jiang, D. Ling-hong, and Z. Wei-feng, Chin. Phys. B 22, 117801 (2013).

    Article  Google Scholar 

  24. M. Ulrich, A. Bunde, and C.D. Kohl, Appl. Phys. Lett. 85, 242 (2004).

    Article  Google Scholar 

  25. M. Ulrich, C.D. Kohl, and A. Bunde, Thin Solid Films 391, 299 (2001).

    Article  Google Scholar 

  26. V. Modafferi, G. Panzera, A. Donato, P.L. Antonucci, C. Cannilla, N. Donato, D. Spadaro, and G. Neri, Sens. Actuators B 163, 61 (2012).

    Article  Google Scholar 

  27. D.E. Williams, Sens. Actuators B57, 1 (1999).

    Article  Google Scholar 

  28. S. Sharma and M. Madou, Philos. Trans. R. Soc. A 370, 2448 (2012).

    Article  Google Scholar 

  29. D.A. Links, CrystEngComm 14, 3283 (2012).

    Article  Google Scholar 

  30. Q. Feng, Y.-X. Yue, W.-H. Wang, and H.-Q. Zhu, Chin. Phys. B 23, 043101 (2014).

    Article  Google Scholar 

  31. J. Huang, H. Ren, P. Sun, C. Gu, Y. Sun, and J. Liu, Sens. Actuators, B 188, 249 (2013).

    Article  Google Scholar 

  32. T. Sato, M. Breedon, and N. Miura, Sensors (Basel) 12, 4706 (2012).

    Article  Google Scholar 

  33. E. Gallego, X. Roca, J.F. Perales, and X. Guardino, J. Environ. Sci. 21, 333 (2009).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sridharan Madanagurusamy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ponnusamy, D., Madanagurusamy, S. Porous Anatase TiO2 Thin Films for NH3 Vapour Sensing. J. Electron. Mater. 44, 4726–4733 (2015). https://doi.org/10.1007/s11664-015-4099-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-015-4099-4

Keywords

Navigation