Skip to main content
Log in

Perpendicular Growth Characteristics of Cu-Sn Intermetallic Compounds at the Surface of 99Sn-1Cu/Cu Solder Interconnects

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The growth of intermetallic compounds (IMCs) on the free surface of 99Sn-1Cu solder joints perpendicular to the interdiffusion direction has been investigated in this work. The specimens were specifically designed and polished to reveal a flat free surface at the solder/Cu interface for investigation. After aging at 175°C for progressively increased durations, the height of the perpendicular IMCs was examined and found to follow a parabolic law with aging duration that could be expressed as \(y = 0.11\sqrt t\), where t is the aging duration in hours and y is the height of the perpendicular IMCs in μm. For comparison, the planar growth of IMCs along the interdiffusion direction was also investigated in 99Sn-1Cu/Cu solder joints. After prolonged aging at 175°C, the thickness of the planar interfacial IMC layers also increased parabolically with aging duration and could be expressed as \(h_{\rm{IMC}} = 0.27\sqrt t + 4.6\), where h is the thickness in μm and t is the time in hours. It was found that both the planar and perpendicular growth of the IMCs were diffusion-controlled processes, but the perpendicular growth of the IMCs was much slower than their planar growth due to the longer diffusion distance. It is proposed that Cu3Sn forms prior to the formation of Cu6Sn5 in the perpendicular IMCs, being the reverse order compared with the planar IMC growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Ping-Feng, L. Yi-Shao, S.-R. Jian, and C. Jiunn, 8th International Conference on Electronic Packaging Technology, Shanghai, 14–17 August, 2007, pp. 1–5.

  2. L. Jiang, H. Jiang, and N. Chawla, J. Electron. Mater. 41, 2083 (2012).

    Article  Google Scholar 

  3. Q.K. Zhang, J. Tan, and Z.F. Zhang, J. Appl. Phys. 110, 014502 (2011).

    Article  Google Scholar 

  4. S.W.R. Lee and S. Fubin, International Microsystems, Packaging, Assembly Conference Taiwan 2006, Taipei, 18–20 October, 2006, pp. 105–108.

  5. J.H.L. Pang, T.H. Low, B.S. Xiong, X. Luhua, and C.C. Neo, Thin Solid Films 462–463, 370 (2004).

  6. J.-W. Yoon, S.-W. Kim, and S.-B. Jung, Mater. Trans. 45, 727 (2004).

    Article  Google Scholar 

  7. Y. Liu and F. Sun, J. Mater. Sci. Mater. Electron. 24, 290 (2013).

    Article  Google Scholar 

  8. C. Chen, H.-Y. Hsiao, Y.-W. Chang, F. Ouyang, and K.N. Tu, Mater. Sci. Eng. R. 73, 85 (2012).

    Article  Google Scholar 

  9. T.Y. Lee, K.N. Tu, and D.R. Frear, J. Appl. Phys. 90, 4502 (2001).

    Article  Google Scholar 

  10. C.-M. Chen and C.-H. Chen, J. Electron. Mater. 36, 1363 (2007).

    Article  Google Scholar 

  11. Y.S. Kaganovskii, L.N. Paritskaya, V.V. Bogdanov, and A.O. Grengo, Acta Mater. 45, 3927 (1997).

    Article  Google Scholar 

  12. J. Gong, C. Liu, P.P. Conway, and V.V. Silberschmidt, Scripta Mater. 60, 333 (2009).

    Article  Google Scholar 

  13. C.Y. Liu and K.N. Tu, J. Mater. Res. 13, 37 (1998).

    Article  Google Scholar 

  14. Y.S. Kaganovskii, L.N. Paritskaya, and V.V. Bogdanov, Powder Metall. Met. C+ 47, 652 (2008).

  15. Y.C. Chan, A.C.K. So, and J.K.L. Lai, Mater. Sci. Eng. B 55, 5 (1998).

    Article  Google Scholar 

  16. W. Peng, E. Monlevade, and M.E. Marques, Microelectron. Reliab. 47, 2161 (2007).

    Article  Google Scholar 

  17. X. Li, F. Li, F. Guo, and Y. Shi, J. Electron. Mater. 40, 51 (2011).

    Article  Google Scholar 

  18. Z. Huijing, Q. Lin, L. Hua, Z. Ning, and M. HaiTao, 14th International Conference on Electronic Packaging Technology, Dalian, 11–14 August, 2013, pp. 372–376.

  19. H. Xiao, X.Y. Li, Y.X. Zhu, J.L. Yang, J. Chen, and F. Guo, J. Mater. Sci. Mater. Electron. 24, 2527 (2013).

    Article  Google Scholar 

  20. T.-T. Luu, A. Duan, K. Aasmundtveit, and N. Hoivik, J. Electron. Mater. 42, 3582 (2013).

    Article  Google Scholar 

  21. H.K. Kim, H.K. Liou, and K.N. Tu, J. Mater. Res. 10, 497 (1995).

    Article  Google Scholar 

  22. X. Chen, Z. Yun, F. Chonglun, and J.A. Abys, IEEE Trans. Electron. Packag. Manuf. 28, 31 (2005).

    Article  Google Scholar 

  23. M.Y. Tsai, S.C. Yang, Y.W. Wang, and C.R. Kao, J. Alloys Compd. 494, 123 (2010).

    Article  Google Scholar 

  24. T. Laurila, V. Vuorinen, and J.K. Kivilahti, Mater. Sci. Eng. R. 49, 1 (2005).

    Article  Google Scholar 

  25. K.N. Tu and R.D. Thompson, Acta Metall. Mater. 30, 947 (1982).

    Article  Google Scholar 

  26. B.-J. Lee, N.M. Hwang, and H.M. Lee, Acta Mater. 45, 1867 (1997).

    Article  Google Scholar 

  27. R.A. Gagliano, G. Ghosh, and M.E. Fine, J. Electron. Mater. 31, 1195 (2002).

    Article  Google Scholar 

  28. X. Deng, G. Piotrowski, J.J. Williams, and N. Chawla, J. Electron. Mater. 32, 1403 (2003).

    Article  Google Scholar 

  29. Z. Kejun, R. Stierman, C. Tz-Cheng, D. Edwards, K. Ano, and K.N. Tu, J. Appl. Phys. 97, 024508 (2005).

    Article  Google Scholar 

  30. C.-C. Pan, C.-H. Yu, and K.-L. Lin, Appl. Phys. Lett. 93, 061912 (2008).

    Article  Google Scholar 

  31. Y. Wu, J. Sees, C. Pouraghabagher, L.A. Foster, J. Marshall, E. Jacobs, and R. Pinizzotto, J. Electron. Mater. 22, 769 (1993).

    Article  Google Scholar 

  32. H.L.J. Pang, K.H. Tan, X.Q. Shi, and Z.P. Wang, Mater. Sci. Eng. A 307, 42 (2001).

    Article  Google Scholar 

  33. C. Yu, Y. Yang, J. Chen, J. Xu, J. Chen, and H. Lu, Mater. Lett. 128, 9 (2014).

  34. J.Y. Song, J. Yu, and T.Y. Lee, Scripta Mater. 51, 167 (2004).

    Article  Google Scholar 

  35. K.N. Tu, C. Chen, and A. Wu, J. Mater. Sci. Mater. Electron. 18, 269 (2007).

    Article  Google Scholar 

  36. M. Kawano, S. Uchiyama, Y. Egawa, N. Takahashi, Y. Kurita, K. Soejima, M. Komuro, S. Matsui, K. Shibata, J. Yamada, M. Ishino, H. Ikeda, Y. Saeki, O. Kato, H. Kikuchi, and T. Mitsuhashi, International Electron Devices Meeting 2006, San Francisco, 11–13 December, 2006, pp. 1–4.

  37. Y. Seung Wook, K. Jae Hoon, N. Suthiwongsunthorn, P.C. Marimuthu, and F. Carson, IEEE International Conference on 3D System Integration 2009, San Francisco, 28–30 September, 2009, pp. 1–5.

  38. J. Brusse, G. Ewell, and J. Siplon, 22nd Capacitor and Resistor Technology Symposium, New Orleans, 25–29 March, 2002, pp. 67–80.

  39. C.Y. Khor, M.Z. Abdullah, Z.M. Ariff, and W.C. Leong, Int. Commun. Heat Mass. 39, 670 (2012).

    Article  Google Scholar 

Download references

Acknowledgements

Z.C. would like to acknowledge the joint PhD programme between Loughborough University (UK) and Huazhong University of Science and Technology (China). This research was also supported by a Marie Curie International Research Staff Exchange Scheme Project within the 7th European Community Framework Programme, No. PIRSES-GA-2010-269113, entitled “Micro-Multi-Material Manufacture to Enable Multifunctional Miniaturised Devices (M6),” as well as the National Natural Science Foundation of China (No. 60976076).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changqing Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Z., Liu, C., Wu, Y. et al. Perpendicular Growth Characteristics of Cu-Sn Intermetallic Compounds at the Surface of 99Sn-1Cu/Cu Solder Interconnects. J. Electron. Mater. 44, 4836–4845 (2015). https://doi.org/10.1007/s11664-015-4043-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-015-4043-7

Keywords

Navigation