Skip to main content
Log in

Dielectric and Electrical Properties of BiFeO3–LiTaO3 Systems

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Materials of general formula (Bi1−x Li x )(Fe1−x Ta x )O3 (x = 0.0, 0.5) were prepared from polycrystalline BiFeO3 and LiTaO3 by solid-state reaction. Analysis of the basic structural properties of the materials by room-temperature x-ray diffraction revealed the formation of single-phase tetragonal crystals for (Bi0.5Li0.5)(Fe0.5Ta0.5)O3. Scanning electron micrographs confirmed the polycrystalline nature of the materials. The microstructure of the materials comprised uniformly distributed grains of unequal size. Studies of the temperature–frequency dependence of dielectric did not reveal any dielectric anomaly or phase transition in the temperature range studied. The presence of hysteresis loops at room temperature confirmed the known ferroelectricity of BiFeO3 and (Bi0.5Li0.5)(Fe0.5Ta0.5)O3. Complex impedance spectroscopic analysis revealed the materials had negative temperature coefficient of resistance (NTCR)-type behavior. The electrical conductivity and relaxation characteristics of the materials suggested the presence of a thermally activated process, and their values suggested the materials had similar types of conductivity and relaxation species. The frequency dependence of the ac conductivity obeyed Jonscher’s universal power law.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Eerenstein, N.D. Mathur, and J.F. Scott, Nature 442, 759 (2006).

    Article  Google Scholar 

  2. Meiya Li, M. Ning, Y. Ma, Q. Wu, and C.K. Ong, J. Phys. D 40, 1603 (2007).

    Article  Google Scholar 

  3. P.C. Sati, M. Arora, S. Chauhan, M. Kumar, and S. Chhoker, J. Phys. Chem. Solids 75, 105 (2014).

    Article  Google Scholar 

  4. F.M. Bai, J.L. Wang, M. Wutting, J.F. Li, N.G. Wang, A.P. Pyatako, A.K. Zvezdin, L.E. Cross, and D. Viehland, Appl. Phys. Lett. 86, 032511 (2005).

    Article  Google Scholar 

  5. G.A. Smolenskii and I.E. Chupis, Sov. Phys. Uspekhi 25, 475 (1982).

    Article  Google Scholar 

  6. P. Fischer, M. Polomska, I. Sosnowska, and M. Szymanski, J. Phys. C 13, 1931 (1980).

    Article  Google Scholar 

  7. C. HoYang, D. Kan, I. Takeuchi, V. Nagarajand, and J. Seidel, Phys. Chem. Chem. Phys. 14, 1595362 (2012).

    Google Scholar 

  8. I. Sosnowska, M. Loewenhaupt, W.I.F. David, and R.M. Ibberson, Physica B 180–181, 117 (1992).

    Article  Google Scholar 

  9. C. Ederer and N.A. Spaldin, Phys. Rev. B 71, 060401 (2005).

    Article  Google Scholar 

  10. J.R. Teague, R. Gerson, and W.J. James, Solid State Commun. 8, 1073 (1970).

    Article  Google Scholar 

  11. T. Higuchi, W. Sakamoto, N. Itoh, T. Shimura, T. Hattori, and T. Yogo, Appl. Phys. Express 1, 011502 (2008).

    Article  Google Scholar 

  12. I. Sosnowska, T. Peterlin-Newmaier, and E. Steichele, J. Phys. C 15, 4835 (1982).

    Article  Google Scholar 

  13. G.A. Smolenskii and I. Chupis, Sov. Phys. Uspekhi 25, 475 (1982).

    Article  Google Scholar 

  14. V.R. Palkar, J. John, and R. Pinto, Appl. Phys. Lett. 80, 1628 (2002).

    Article  Google Scholar 

  15. Y.P. Wang, L. Zhou, M.F. Zhang, X.Y. Chen, J.M. Liu, and Z.G. Liu, Appl. Phys. Lett. 84, 1731 (2004).

    Article  Google Scholar 

  16. N. Van Minh and N. GiaQuan, J. Alloys Compd. 509, 2663 (2011).

    Article  Google Scholar 

  17. D. Varshney, A. Kumar, and K. Verma, J. Alloys Compd. 509, 8421 (2011).

    Article  Google Scholar 

  18. Y.C. Hu, Z.Z. Jiang, K.G. Gao, G.F. Cheng, J.J. Ge, X.M. Lv, and X.S. Wu, Chem. Phys. Lett. 534, 62 (2012).

    Article  Google Scholar 

  19. M.K.P. Sahoo and R.N.P. Choudhary, Mater. Lett. 67, 308 (2012).

    Article  Google Scholar 

  20. Z. Xuxue, G. Tan, W. Liu, and H. Ren, Mater. Res. Bull. 52, 143 (2014).

  21. M.A. Ahmed, S.F. Mansour, S.I. El-Dek, and M. Abu-Abdeen, Mater. Res. Bull. 49, 352 (2014).

    Article  Google Scholar 

  22. A.J. Moses, The Practicing Scientist’s Handbook (New York: Van Nostr and Reinhold Company, 1978), p. 558.

    Google Scholar 

  23. K.S. Abedin, T. Tsuritani, M. Sato, and H. Ito, Appl. Phys. Lett. 70, 10 (1997).

    Article  Google Scholar 

  24. S. Zhu, Y. Zhu, Z. Yang, H. Wang, Z. Zhang, J. Hong, C. Ge, and N. Ming, Appl. Phys. Lett. 67, 320 (1995).

    Article  Google Scholar 

  25. K. Mizuuchi and K. Yamamoto, Appl. Phys. Lett. 66, 2943 (1995).

    Article  Google Scholar 

  26. F. Zheng, H. Liu, D. Liu, S. Yao, T. Yan, and J. Wang, J. Alloys Compd. 477, 688 (2009).

    Article  Google Scholar 

  27. E.Wu, POWD, an interactive power diffraction data interpretation and indexing program V2.1 (Bedford Park: School of Physical Sciences, Flinder University of south Australia, 1989).

  28. S.Zhu and W.Cao, Phys. Status Solidi A. 173, 495 (1999).

  29. G. Catalan and J.F. Scott, Adv. Mater. 21, 2463 (2009).

    Article  Google Scholar 

  30. S. Das, R. Padhee, P.R. Das, and R.N.P. Choudhary, J. Mater. Sci. 24, 3315 (2013).

    Google Scholar 

  31. S.K. Patri, R.N.P. Choudhary, and B.K. Samantaray, J. Electroceram. 20, 119 (2008).

    Article  Google Scholar 

  32. P. Ganguli, S. Devi, A.K. Jha, and K.L. Deori, Ferroelectrics 381, 111 (2009).

    Article  Google Scholar 

  33. B.N. Parida, R. Padhee, P.R. Das, and R.N.P. Choudhary, J. Alloys Compd. 540, 267 (2012).

    Article  Google Scholar 

  34. P.S. Das, P.K. Chakraborty, B. Behera, and R.N.P. Choudhary, Physica B 395, 98 (2007).

  35. S. Mohanty, R.N.P. Choudhary, B.N. Parida, and R. Padhee, Appl. Phys. A. 116, 1833 (2014).

  36. M.A.L. Nobre and S. Lanfredi, Catal. Today 78, 529 (2003).

    Article  Google Scholar 

  37. D.C. Sinclair and A.R. West, J. Appl. Phys. 66, 3850 (1989).

    Article  Google Scholar 

  38. S. Pattnayak, P.R. Das, and R.N.P. Choudhary, Ceram. Int. 40, 7983 (2014).

    Article  Google Scholar 

  39. S. Chatterjee, P.K. Mahapatra, R.N.P. Choudhary, and A.K. Thakur, Phys. Status Solidi A 201, 588 (2004).

    Article  Google Scholar 

  40. R.N.P. Choudhary, B. Pati, P.R. Das, R.R. Dash, and A. Paul, J. Electron. Mater. 42, 769 (2013).

    Article  Google Scholar 

  41. J.R. Macdonald, Solid State Ion. 13, 147 (1984).

    Article  Google Scholar 

  42. A. Shukla and R.N.P. Choudhary, J. Mater. Sci. 47, 5074 (2012).

    Article  Google Scholar 

  43. M.A.L. Nobre and S. Lanfredi, J. Appl. Phys. 93, 5557 (2003).

    Article  Google Scholar 

  44. J.R. Macdonaled, Solid State Ion. 13, 147 (1984).

    Article  Google Scholar 

  45. A.R. West, D.C. Sinclair, and N. Hirose, J. Electroceram. 1, 65 (1997).

    Article  Google Scholar 

  46. O. Raymond, R. Font, N. Suaerz-Almodovar, J. Portelles, and J.M. Siqueiros, J. Appl. Phys. 97, 084108 (2005).

    Article  Google Scholar 

  47. J.R. Macdonaled, Impedance Spectroscopy, Emphasizing Solid Mterials and Systems (New York: Wiley, 1987).

    Google Scholar 

  48. M. Li, A. Feteira, and D.C. Sinclair, J. Appl. Phys. 98, 084101 (2005).

    Article  Google Scholar 

  49. S. Mohanty, R.N.P. Choudharyn, R. Padhee, and B.N. Parida, Ceram. Int. 40, 9017 (2014).

    Article  Google Scholar 

  50. N.K. Karan, D.K. Pradhan, R. Thomas, B. Natesan, and R.S. Katiyar, Solid State Ion. 179, 689 (2008).

    Article  Google Scholar 

  51. A.K. Jonscher, Nature 267, 673 (1977).

    Article  Google Scholar 

  52. R.N.P. Choudhary, D.K. Pradhan, C.M. Tirado, G.E. Bonilla, and R.S. Katiyar, J. Mater. Sci. 42, 7423 (2007).

    Article  Google Scholar 

  53. O. Raymond, R. Font, N. Suárez-Almodovar, J. Portelles, and J.M. Siqueiros, J. Appl. Phys. 97, 084108 (2005).

    Article  Google Scholar 

  54. R.N.P. Choudhary and U. Bhunia, J. Mater. Sci. 37, 5177 (2002).

    Article  Google Scholar 

  55. O.P. Thakur and C. Prakash, Phase Transit. 76, 567 (2003).

    Article  Google Scholar 

  56. T.-H. Wang, C.-S. Tu, Y. Ding, T.-C. Lin, C.-S. Ku, W.-C. Yang, H.-H. Yu, K.-T. Wu, Y.-D. Yao, and H.-Y. Lee, Curr. Appl. Phys. 11, 240 (2011).

    Article  Google Scholar 

  57. Z.Z. Ma, Z.M. Tian, J.Q. Li, C.H. Wang, S.X. Huo, H.N. Duan, and S.L. Yuan, Solid State Sci. 13, 2196 (2011).

    Article  Google Scholar 

  58. H. Amorin, C. Correas, P. Ramos, T. Hungria, A. Castro, and M. Alguero, Appl. Phys. Lett. 101, 172908 (2012).

    Article  Google Scholar 

  59. R. Zuo, C. Ye, and X. Fang, J. Phys. Chem. Solids 69, 230 (2008).

    Article  Google Scholar 

  60. S.K. Pradhan and B.K. Roul, Physica B 406, 3313 (2011).

    Article  Google Scholar 

  61. T.-H. Wang, C.-S. Tu, H.-Y. Chen, Y. Ding, T.C. Lin, Y.-D. Yao, V.H. Schmidt, and K.-T. Wu, J. Appl. Phys. 109, 044101 (2011).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suchismita Mohanty.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohanty, S., Choudhary, R. Dielectric and Electrical Properties of BiFeO3–LiTaO3 Systems. J. Electron. Mater. 44, 2359–2368 (2015). https://doi.org/10.1007/s11664-015-3789-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-015-3789-2

Keywords

Navigation