Skip to main content
Log in

Effect of Carrier-Doping on the Thermoelectric Properties of Narrow-Bandgap (Fe,Ru)Ga3 Intermetallic Compounds

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

We have focused on the binary narrow-bandgap intermetallic compounds FeGa3 and RuGa3 as thermoelectric materials. Their crystal structure is FeGa3-type (tetragonal, P42/mnm) with 16 atoms per unit cell. Despite their simple crystal structure, their room temperature thermal conductivity is in the range 4–5–W–m−1–K−1. Both compounds have narrow-bandgaps of approximately 0.3–eV near the Fermi level. Because their Seebeck coefficients are quite large negative values in the range 350–<–|S 373K|–<–550–μV–K−1 for undoped samples, it should be possible to obtain highly efficient thermoelectric materials both by adjusting the carrier concentration and by reducing the thermal conductivity. Here, we report the effects of doping on the thermoelectric properties of FeGa3 and RuGa3 as n and p-type materials. The dimensionless figure of merit, ZT, was significantly improved by substitution of Sn for Ga in FeGa3 (electron-doping) and by substitution of Zn for Ga in RuGa3 (hole-doping), mainly as a result of optimization of the electronic part, S 2 σ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.J. Snyder and E.S. Toberer, Nat. Mater. 7, 105 (2008).

    Article  Google Scholar 

  2. S. Takahashi, H. Muta, K. Kurosaki, and S. Yamanaka, J. Alloys Compd. 493, 17 (2010).

    Article  Google Scholar 

  3. Y. Takagiwa, Y. Matsubayashi, A. Suzumura, J.T. Okada, and K. Kimura, Mater. Trans. 51, 988 (2010).

    Article  Google Scholar 

  4. Y. Amagai, A. Yamamoto, C.-H. Lee, H. Ohara, K. Ueno, T. Iida, and Y. Takanashi, Papers of Technical Meeting on Frontier Technology and Engineering, IEE Japan, Vol. FTE-05 (2005), pp. 41–46.

  5. Y. Takagiwa, J.T. Okada, and K. Kimura, J. Alloys Compd. 507, 364 (2010).

    Article  Google Scholar 

  6. Y. Takagiwa, J.T. Okada, and K. Kimura, J. Electron. Mater. 40, 1067 (2011).

    Article  Google Scholar 

  7. V. Ponnambalam, G. Lehr, and D.T. Morelli, J. Mater. Res. 26, 1907 (2011).

    Article  Google Scholar 

  8. Y. Takagiwa, K. Kitahara, and K. Kimura, J. Appl. Phys. 113, 023713 (2013).

    Article  Google Scholar 

  9. Y. Takagiwa, K. Kitahara, and K. Kimura, Mater. Trans. 54, 953 (2013).

    Article  Google Scholar 

  10. M. Wagner, R. Cardoso-Gil, N. Oeschler, H. Rosner, and Yu Grin, J. Mater. Res. 26, 1886 (2011).

    Article  Google Scholar 

  11. D. Kasinathan, M. Wagner, K. Koepernik, R. Cardoso-Gil, Yu Grin, and H. Rosner, Phys. Rev. B 85, 035207 (2012).

    Article  Google Scholar 

  12. Y. Takagiwa, K. Kitahara, Y. Matsubayashi, and K. Kimura, J. Appl. Phys. 111, 123707 (2012).

    Article  Google Scholar 

  13. M.A. Avila, K. Suekuni, K. Umeo, H. Fukuoka, S. Yamanaka, and T. Takabatake, Appl. Phys. Lett. 92, 041901 (2008).

    Article  Google Scholar 

  14. Y. Kono, N. Ohya, T. Taguchi, K. Suekuni, T. Takabatake, S. Yamamoto, and K. Akai, J. Appl. Phys. 107, 123720 (2010).

    Article  Google Scholar 

  15. Y. Imai and A. Watanabe, Intermetallics 14, 722 (2006).

    Article  Google Scholar 

  16. U. Häussermann, M. Boström, P. Viklund, ö. Rapp, and T. Björnängen, J. Solid State Chem. 165, 94 (2002).

    Article  Google Scholar 

  17. Y. Amagai, A. Yamamoto, T. Iida, and Y. Takanashi, J. Appl. Phys. 96, 5644 (2004).

    Article  Google Scholar 

  18. C.S. Lue, W.J. Lai, and Y.-K. Kuo, J. Alloys Compd. 392, 72 (2005).

    Article  Google Scholar 

  19. Y. Hadano, S. Narazu, M.A. Avila, T. Onimaru, and T. Takabatake, J. Phys. Soc. Jpn. 78, 013702 (2009).

    Article  Google Scholar 

  20. N. Haldolaarachchige, A.B. Karki, W. Adam Phelan, Y.M. Xiong, R. Jin, J.Y. Chan, S. Stadler, and D.P. Young, J. Appl. Phys. 109, 103712 (2011).

    Article  Google Scholar 

  21. K. Umeo, Y. Hadano, S. Narazu, T. Onimaru, M.A. Avila, and T. Takabatake, Phys. Rev. B 86, 144421 (2012).

    Article  Google Scholar 

  22. N. Tsujii, H. Yamaoka, M. Matsunami, R. Eguchi, Y. Ishida, Y. Senba, H. Ohashi, S. Shin, T. Furubayashi, H. Abe, and H. Kitazawa, J. Phys. Soc. Jpn. 77, 024705 (2008).

    Article  Google Scholar 

  23. H. Yamaoka, M. Matsunami, R. Eguchi, Y. Ishida, N. Tsujii, Y. Takahashi, Y. Senba, H. Ohashi, and S. Shin, Phys. Rev. B 78, 045125 (2008).

    Article  Google Scholar 

  24. M. Arita, K. Shimada, Y. Utsumi, O. Morimoto, H. Sato, H. Namatame, M. Taniguchi, Y. Hadano, and T. Takabatake, Phys. Rev. B 83, 245116 (2011).

    Article  Google Scholar 

  25. M. Wagner-Reetz, R. Cardoso-Gil, and Y. Grin, J. Electron. Mater. doi:10.1007/s11664-013-2888-1.

  26. D.G. Cahill, S.K. Watson, and R.O. Pohl, Phys. Rev. B 46, 6131 (1992).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Takagiwa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takagiwa, Y., Matsuura, Y. & Kimura, K. Effect of Carrier-Doping on the Thermoelectric Properties of Narrow-Bandgap (Fe,Ru)Ga3 Intermetallic Compounds. J. Electron. Mater. 43, 2206–2211 (2014). https://doi.org/10.1007/s11664-014-3008-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-014-3008-6

Keywords

Navigation