Skip to main content
Log in

Effect of Nanopores on the Phonon Conductivity of Crystalline CoSb3: A Molecular Dynamics Study

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Molecular dynamics simulations have been performed to investigate the effect of nanometer-size pores on the phonon conductivity of single-crystal bulk CoSb3. The cylindrical pores are uniformly distributed along two vertical principal crystallographic directions of a square lattice. Because pore diameter and porosity are two key factors that could affect the performance of the materials, they were varied individually in the ranges a 0–6a 0 and 0.1–5%, respectively, where a 0 is the lattice constant of CoSb3. The simulation results indicate that the phonon conductivity of nanoporous CoSb3 is significantly lower than that of no-pore CoSb3. The reduction of phonon conductivity in this simulation was consistent with the ballistic–diffusive microscopic effective medium model, demonstrating the ballistic character of phonon transport when the phonon mean-free-path is comparable with or larger than the pore size. Reducing pore diameter or increasing porosity are alternative means of effective reduction of the thermal conductivity of CoSb3. These results are expected to provide a useful basis for the design of high-performance skutterudites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T.M. Tritt and M.A. Subramanian, MRS Bull. 31, 188–194 (2006).

    Article  Google Scholar 

  2. G.J. Snyder and E.S. Toberer, Nat. Mater. 7, 105 (2008).

    Article  Google Scholar 

  3. L.E. Bell, Science 321, 1457–1461 (2008).

    Article  Google Scholar 

  4. H. Anno and K. Matsubara, Phys. Rev. B 62, 10737 (2000).

    Article  Google Scholar 

  5. B.C. Sales, D. Mandrus, and R.K. Williams, Science 272, 1325 (1996).

    Article  Google Scholar 

  6. G.S. Nolas, D.T. Morelli, and T.M. Tritt, Annu. Rev. Mater. Sci. 29, 89 (1999).

    Article  Google Scholar 

  7. Y.C. Lan, A.J. Minnich, G. Chen, and Z.F. Ren, Adv. Funct. Mater. 20, 357 (2010).

    Article  Google Scholar 

  8. J.F. Li, W.S. Liu, L.D. Zhao, and M. Zhou, NPG Asia Mater. 2, 152 (2010).

    Article  Google Scholar 

  9. G.A. Slack, CRC Handbook of Thermoelectrics, ed. D.M. Rowe (Boca Raton: CRC Press, 1995), pp. 407–440.

    Google Scholar 

  10. W.S. Liu, B.P. Zhang, J.F. Li, and L.D. Zhao, J. Phys. D 40, 566 (2007).

    Article  Google Scholar 

  11. X.W. Wang, H. Lee, Y.C. Lan, H. Zhu, G. Joshi, D.Z. Wang, J. Yang, A.J. Muto, M.Y. Tang, J. Klatsky, S. Song, M.S. Dresselhaus, G. Chen, and Z.F. Ren, Appl. Phys. Lett. 93, 193121 (2008).

    Article  Google Scholar 

  12. J.-H. Lee, J.C. Grossman, J. Reed, and G. Galli, Appl. Phys. Lett. 91, 223110 (2007).

    Article  Google Scholar 

  13. J.-H. Lee and J.C. Grossman, Appl. Phys. Lett. 95, 013106 (2009).

    Article  Google Scholar 

  14. Q.Y. He, S.J. Hu, X.G. Tang, Y.C. Lan, J. Yang, X.W. Wang, Z.F. Ren, Q. Hao, and G. Chen, Appl. Phys. Lett. 93, 042108 (2008).

    Article  Google Scholar 

  15. D.C. Rapaport, The Art of Molecular Dynamics Simulations, 1st ed. (Cambridge: Cambridge University Press, 1995).

    Google Scholar 

  16. F. Ercolessi, A Molecular Dynamics Primer. Spring College in Computational Physics (Trieste: ICTP, International Center for Theoretical Physics, 1997).

    Google Scholar 

  17. Large-scale Atomic/Molecular Massively Parallel Simulator, LAMMPS (Jan 15, 2010), Available at: http://lammps.sandia.gov.

  18. X.Q. Yang, A. Zhou, L.S. Liu, Q.J. Zhang, and P.C. Zhai, J. Electron. Mater. 39, 1714 (2010).

    Article  Google Scholar 

  19. F. Muller-Plathe and D. Reith, Comput. Theor. Polym. Sci. 9, 203 (1999).

    Article  Google Scholar 

  20. X.Q. Yang, P.C. Zhai, L.S. Liu, and Q.J. Zhang, J. Appl. Phys. 109, 123517 (2011).

    Article  Google Scholar 

  21. Ravi Prasher, J. Appl. Phys. 100, 064302 (2006).

    Article  Google Scholar 

  22. D.W. Song, W.L. Liu, T. Zeng, T. Borca-Tasciuc, and G. Chen, Appl. Phys. Lett. 77, 3854 (2000).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xu-qiu Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, Xq., Zhai, Pc., Liu, Ls. et al. Effect of Nanopores on the Phonon Conductivity of Crystalline CoSb3: A Molecular Dynamics Study. J. Electron. Mater. 43, 1842–1846 (2014). https://doi.org/10.1007/s11664-013-2886-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-013-2886-3

Keywords

Navigation