Skip to main content
Log in

Thermoelectric Analysis for Helical Power Generation Systems

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The performance of a three-dimensional helical thermoelectric generation (TEG) system is examined by exposing it to a temperature difference with hot and cold sources. The helical paths for the two thermal fluids give the TEG device the potential to efficiently convert thermal energy. The characteristic performance of the helical system is numerically analyzed by using the finite-volume method in a compact system. The helical system is compared with a straight system in which all the thermoelectric (TE) elements present equivalent geometry. The difference in the TE performance between the two systems is not significant when the TE surfaces are maintained at constant temperatures. Both the electromotive force and the current in the TEG system increase linearly with the temperature difference ΔT applied at the two module surfaces. The current preferentially flows through a main path determined by the geometry of the TE element. The merits of the helical design are its compactness, space saving, and smooth fluid flow due to gravity, compared with the straight system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Aoki, C. Wan, H. Ishiguro, H. Morimitsu, and K. Koumoto, J. Ceram. Soc. Jpn. 119, 382 (2011).

    Article  Google Scholar 

  2. Y. Saiga, K. Suekuni, S.K. Deng, T. Yamamoto, Y. Kono, N. Ohya, and T. Takabatake, J. Alloy. Compd. 507, 1 (2010).

    Article  Google Scholar 

  3. T. Sakamoto, T. Iida, A. Matsumoto, Y. Honda, T. Nemoto, J. Sato, T. Nakajima, H. Taguchi, and Y. Takanashi, J. Electron. Mater. 39, 1708 (2010).

    Article  Google Scholar 

  4. A.J. Zhou, T.J. Zhu, X.B. Zhao, S.H. Yang, T. Dasgupta, C. Stiewe, R. Hassdorf, and E. Mueller, J. Electron. Mater. 39, 2002 (2010).

    Article  Google Scholar 

  5. Y. Ma, Q. Hao, B. Poudel, Y. Lan, B. Yu, D. Wang, G. Chen, and Z. Ren, Nano Lett. 8, 2580 (2008).

    Article  Google Scholar 

  6. K. Koumoto, R. Funahashi, E. Guilmeau, Y. Miyazaki, A. Weidenkaff, Y. Wang, and C. Wan, J. Am. Ceram. Soc. 96, 1 (2013).

    Article  Google Scholar 

  7. G. Min and M. Rowe, IEEE Trans. Energy Convers. 22, 528 (2007).

    Article  Google Scholar 

  8. J. Zhu, J. Gao, M. Chen, J. Zhang, Q. Du, L.A. Rosendahl, and R.O. Suzuki, J. Electron. Mater. 40, 744 (2011).

    Article  Google Scholar 

  9. R.O. Suzuki, Y. Sasaki, T. Fujisaka, and M. Chen, J. Electron. Mater. 41, 1766 (2012).

    Article  Google Scholar 

  10. S.B. Riffat and G.Q. Qiu, Int. J. Energy Res. 30, 67 (2006).

    Article  Google Scholar 

  11. R.O. Suzuki, J. Power Sources 133, 277 (2003).

    Article  Google Scholar 

  12. A.Z. Sahin and B.S. Yilbas, Energy Conv. Manag. 65, 26 (2013).

    Article  Google Scholar 

  13. A. Takezawa and M. Kitamura, Int. J. Numer. Methods Eng. 90, 1363 (2012).

    Article  Google Scholar 

  14. M. Chen, L.A. Rosendahl, and T. Condra, Int. J. Heat Mass Transf. 54, 345 (2011).

    Article  Google Scholar 

  15. R. Funahashi, Sci. Adv. Mater. 3, 682 (2011).

    Article  Google Scholar 

  16. L. Zhang, T. Tosho, N. Okinaka, and T. Akiyama, Mater. Trans. 49, 1675 (2008).

    Article  Google Scholar 

  17. M. Chen, S.J. Andreasen, L. Rosendahl, S.K. Kaer, and T. Condra, J. Electron. Mater. 39, 1593 (2010).

    Article  Google Scholar 

  18. R.O. Suzuki and D. Tanaka, J. Power Sources 124, 293 (2003).

    Article  Google Scholar 

  19. R.O. Suzuki and D. Tanaka, J. Power Sources 132, 266 (2004).

    Article  Google Scholar 

  20. R.O. Suzuki and D. Tanaka, J. Power Sources 122, 201 (2003).

    Article  Google Scholar 

  21. T. Fujisaka, H. Sui, and R.O. Suzuki, J. Electron. Mater. 42, 1688 (2013).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangning Meng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meng, X., Fujisaka, T. & Suzuki, R.O. Thermoelectric Analysis for Helical Power Generation Systems. J. Electron. Mater. 43, 1509–1520 (2014). https://doi.org/10.1007/s11664-013-2768-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-013-2768-8

Keywords

Navigation