Skip to main content
Log in

Thermal Conductivity and ZT in Disordered Organic Thermoelectrics

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

For decades, continuous attempts have been made to improve the figure of merit (ZT) of thermoelectrics. The theory behind the Seebeck effect itself is well researched, but the problem with ZT is related to materials properties that offset one another. This work analyzed the link between the site energy distributions and thermal conductivity of oxidized poly(3,4-ethylenedioxythiophene-tosylate) (PEDOT:Tos), which was reported to be a good organic thermoelectric. To understand how heat flow was affected by “disorder” in PEDOT:Tos and the associated electron–phonon interactions, we computed the values of the thermal conductivity κ and ZT using materials parameters extracted from the open literature. By varying the values of the parameters separately, we were able to identify their individual influence on κ and ZT. Our results suggest that ZT is most sensitive to changes in σ, the bandwidth of the density of states (DOS) of the transport sites, and less so to changes in n eff, the effective carrier density. Our simulations also suggested that ZT could become exceptionally large (approaching a value of ~20) if σ were lowered to 1 meV to 2 meV. This would be a tremendous approach to increase ZT in oxidized PEDOT:Tos.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Fan, J. Zhao, J. Guo, Q. Yan, J. Ma, and H.H. Hng, Appl. Phys. Lett. 96, 182104 (2010).

    Article  Google Scholar 

  2. B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashaee, X. Chen, J. Liu, M. Dresselhaus, G. Chen, and Z. Ren, Science 320, 634 (2008).

    Article  CAS  Google Scholar 

  3. R. Mehta, Y. Zhang, C. Karthik, B. Singh, R.W. Siegel, T. Borca-Tasciuc, and G. Ramanath, Nat. Mater. 11, 233 (2012).

    Article  CAS  Google Scholar 

  4. Y. Sun, P. Sheng, C. Di, F. Jiao, W. Xu, D. Qiu, and D. Zhu, Adv. Mater. 24, 932 (2012).

    Article  CAS  Google Scholar 

  5. O. Bubnova, Z.U. Khan, A. Malti, S. Braun, M. Fahlman, M. Berggren, and X. Crispin, Nat. Mater. 10, 429 (2011).

    Article  CAS  Google Scholar 

  6. S. Berlab and W. Brutting, Phys. Rev. Lett. 89, 286601 (2002).

    Article  Google Scholar 

  7. M.C.J.M. Vissenberg and M. Matters, Phys. Rev. B57, 12964 (1998).

    Google Scholar 

  8. M.E. Gershenson, V. Podzorov, and A.F. Morpurgo, Rev. Mod. Phys. 78, 973 (2006).

    Article  CAS  Google Scholar 

  9. N.F. Mott and E.A. Davis, Electronic Processes in Non-Crystalline Materials, 2nd ed. (Oxford: Clarendon, 1979).

    Google Scholar 

  10. K. Hannewald, M. Stojanovic, J.M.T. Schellekens, P.A. Bobbert, G. Kresse, and J. Hafner, Phys. Rev. B89, 075211 (2004).

    Google Scholar 

  11. S.V. Novikov, D.H. Dunlap, V.M. Kenkre, P.E. Parris, and A.V. Vannikov, Phys. Rev. Lett. 81, 4472 (1998).

    Article  CAS  Google Scholar 

  12. S. Wang, Fundamentals of Semiconductor Theory and Device Physics (Englewood Cliffs: Prentice Hall, 1989), p. 247.

    Google Scholar 

  13. C. Kittel, Introduction to Solid State Physics, 3rd ed. (New York: Wiley, 1966), p. 185.

    Google Scholar 

  14. E.-G. Kim and J.-L. Bredas, J. Am. Chem. Soc. 130, 16880 (2008).

    Article  CAS  Google Scholar 

  15. H.L. Kwok, J. Electron. Mater. 41, 476 (2012).

    Article  CAS  Google Scholar 

  16. G.D. Mahan and J. Sofo, Proc. Natl. Acad. Sci. USA 93, 7436 (1996).

    Article  CAS  Google Scholar 

  17. G. Pernot, M. Stoffel, I. Savic, F. Pezzoli, P. Chen, G. Savelli, A. Jacquot, J. Schumann, U. denker, I. Monch, Ch. Deneke, O.G. Schmidt, J.M. Rampnoux, S. Wang, M. Plissonnier, A. Rastelli, S. Dilhaire, and N. Mingo, Nat. Mater. 9, 491 (2010).

    Google Scholar 

  18. J. Zhou, R. Yang, G. Chen, and M.S. Dresselhaus, Phys. Rev. Lett. 107, 226601 (2011).

    Article  Google Scholar 

  19. H.L. Kwok, J. Mater. Sci. Mater. Electron. 23, 2272 (2012).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. L. Kwok.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kwok, H.L. Thermal Conductivity and ZT in Disordered Organic Thermoelectrics. J. Electron. Mater. 42, 355–358 (2013). https://doi.org/10.1007/s11664-012-2374-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-012-2374-1

Keywords

Navigation