Skip to main content
Log in

Effect of GaSb Addition on the Thermoelectric Properties of Mg2Si0.5Sn0.5 Solid Solutions

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Mg2Si0.5Sn0.5-xGaSb (0 ≤ x ≤ 0.15) solid solutions were synthesized by a B2O3 flux method followed by hot pressing. X-ray power diffraction analysis and scanning electron microscopy observations confirm that single-phase samples were obtained. The lattice constant monotonically increases with increasing GaSb content. It was found that the Seebeck coefficients showed weak temperature dependency after alloying with GaSb, being enhanced at high temperatures. The electrical conductivity increases while the lattice thermal conductivity decreases with increasing GaSb content. A maximum dimensionless figure of merit of 0.47 was obtained at 660 K for the sample with x = 0.08, mainly due to its high electrical conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T.M. Tritt, Science 272, 1276 (1996).

    Article  CAS  Google Scholar 

  2. F.G. Disalvo, Science 285, 703 (1999).

    Article  CAS  Google Scholar 

  3. J.J. Shen, T.J. Zhu, X.B. Zhao, S.N. Zhang, S.H. Yang, and Z.Z. Yin, Energy Environ. Sci. 3, 1519 (2010).

    Article  CAS  Google Scholar 

  4. J.P. Heremans, V. Jovovic, E.S. Toberer, A. Saramat, K. Kurosaki, A. Charoenphakdee, S. Yamanaka, and G.J. Snyder, Science 321, 554 (2008).

    Article  CAS  Google Scholar 

  5. V.K. Zaitsev, M.I. Fedorov, E.A. Gurieva, I.S. Eremin, P.P. Konstantinov, A.Y. Samunin, and M.V. Vedernikov, Phys. Rev. B 74, 045207 (2006).

    Article  Google Scholar 

  6. Q. Zhang, J. He, T.J. Zhu, S.N. Zhang, X.B. Zhao, and T.M. Tritt, Appl. Phys. Lett. 93, 102109 (2008).

    Article  Google Scholar 

  7. X.H. Ji, J. He, Z. Su, N. Gothard, and T.M. Tritt, J. Appl. Phys. 104, 034907 (2008).

    Article  Google Scholar 

  8. S.N. Zhang, T.J. Zhu, S.H. Yang, C. Yu, and X.B. Zhao, Acta Mater. 58, 4160 (2010).

    Article  CAS  Google Scholar 

  9. S.R. Brown, S.M. Kauzlarich, F. Gascoin, and G.J. Snyder, Chem. Mater. 18, 1873 (2006).

    Article  CAS  Google Scholar 

  10. K.F. Hsu, S. Loo, F. Guo, W. Chen, J.S. Dyck, C. Uher, T. Hogan, E.K. Polychroniadis, and M.G. Kanatzidis, Science 303, 818 (2004).

    Article  CAS  Google Scholar 

  11. S.H. Yang, T.J. Zhu, T. Sun, S.N. Zhang, X.B. Zhao, and J. He, Nanotechnology 19, 245707 (2008).

    Article  CAS  Google Scholar 

  12. J. Tani and H. Kido, Intermetallics 16, 418 (2008).

    Article  CAS  Google Scholar 

  13. J. Tani and H. Kido, J. Alloys Compd. 466, 335 (2008).

    Article  CAS  Google Scholar 

  14. M.I. Fedorov, V.K. Zaitsev, I.S. Eremin, E.A. Gurieva, A.T. Burkov, P.P. Konstantinov, M.V. Vedernikov, A.Yu. Samunin, G.N. Isachenko, and A.A. Shabaldin, Phys. Solid State 48, 1486 (2006).

    Article  CAS  Google Scholar 

  15. G.S. Nolas, D. Wang, and M. Beekman, Phys. Rev. B 76, 235204 (2007).

    Article  Google Scholar 

  16. M. Riffel and J. Schilz. Proc. 15th Int. Conf. on Thermoelectrics, 1996, p. 133.

  17. Q. Zhang, J. He, X.B. Zhao, S.N. Zhang, T.J. Zhu, H. Yin, and T.M. Tritt, J. Phys. D Appl. Phys. 41, 185103 (2008).

    Article  Google Scholar 

  18. H.L. Gao, T.J. Zhu, X.X. Liu, L.X. Chen, and X.B. Zhao, J. Mater. Chem. 21, 5933 (2011).

    Article  CAS  Google Scholar 

  19. A. Kato, T. Yagi, and N. Fukusako, J. Phys. Condens. Matter 21, 205801 (2009).

    Article  Google Scholar 

  20. S. Kasap, Principles of Electrical Engineering Materials and Devices, 2nd ed. (New York: McGraw Hill, 1997).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. B. Zhao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Du, Z.L., Jiang, G.Y., Chen, Y. et al. Effect of GaSb Addition on the Thermoelectric Properties of Mg2Si0.5Sn0.5 Solid Solutions. J. Electron. Mater. 41, 1222–1226 (2012). https://doi.org/10.1007/s11664-011-1886-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-011-1886-4

Keywords

Navigation