Skip to main content
Log in

In Situ Raman Analysis of a Bulk GaN-Based Schottky Rectifier Under Operation

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

We have fabricated vertical Schottky rectifiers based on a free-standing GaN substrate and have measured the temperature of the device under operation in situ using micro-Raman spectroscopy. The n-type bulk GaN wafer with 500 μm thickness was prepared using hydride vapor-phase epitaxy. The carrier concentration of the wafer was ~2.4 × 1016 cm−3. Semitransparent Ni and multilayered Ti/Al/Pt/Au were used to make a Schottky and a full backside ohmic contact, respectively. In this investigation, Raman spectra were collected as a function of the forward power applied to the Schottky diode. A systematic shift and broadening of the Raman E 2 peak were observed as a function of increasing bias. This was caused by device heating due to the increase in current as the forward bias was increased. It was demonstrated that micro-Raman spectroscopy can serve as an excellent in situ diagnostic tool for analyzing thermal characteristics of the GaN Schottky diode. Moreover, the strain caused by the piezoelectric effect was calculated to lead to a shift of the Raman peak at the level of 0.001 cm−1. This confirmed that the observed Raman peak shift was predominantly produced by a thermal not piezoelectric effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. T. Beechem, A. Christensen, S. Graham, and D. Green, J. Appl. Phys. 103, 124501 (2008).

    Article  ADS  Google Scholar 

  2. Y. Ohno, M. Akita, S. Kishimoto, K. Maezawa, and T. Mizutani, Jpn. J. Appl. Phys. 41, L452 (2002).

    Article  CAS  ADS  Google Scholar 

  3. I. Ahmad, V. Kasisomayajula, M. Holtz, J.B. Berg, S.R. Kurtz, C.P. Tigges, A.A. Alleman, and A.G. Baca, Appl. Phys. Lett. 86, 173503 (2005).

    Article  ADS  Google Scholar 

  4. W.D. Hu, X.S. Chen, Z.J. Quan, C.S. Xia, W. Lu, and P.D. Ye, J. Appl. Phys. 100, 074501 (2006).

    Article  ADS  Google Scholar 

  5. I. Ahmad, V. Kasisomayajula, D.Y. Song, L. Tian, J.M. Berg, and M. Holtz, J. Appl. Phys. 100, 113718 (2006).

    Article  ADS  Google Scholar 

  6. J. Kim, J.A. Freitas Jr., P.B. Klein, S. Jang, F. Ren, and S.J. Pearton, Electrochem. Solid-State Lett. 8, G345 (2005).

    Article  CAS  Google Scholar 

  7. Y. Zhou, M. Li, D. Wang, C. Ahyi, C.C. Tin, J. Williams, and M. Park, Appl. Phys. Lett. 88, 113509 (2006).

    Article  ADS  Google Scholar 

  8. S.M. Sze and K.K. Ng, Physics of Semiconductor Devices, 3rd ed. (New York: Wiley, 2007).

    Google Scholar 

  9. D.K. Schroder, Semiconductor Material and Device Characterization (New York: Wiley, 2006).

    Google Scholar 

  10. J.-I. Chyi, C.-M. Lee, C.-C. Chuo, X.A. Cao, G.T. Dang, A.P. Zhang, F. Ren, S.J. Pearton, S.N.G. Chu, and R.G. Wilson, Solid-State Electron. 44, 613 (2000).

    Article  CAS  ADS  Google Scholar 

  11. W. Hayes and R. Laudon, Scattering of Light by Crystals (New York: Wiley, 1978).

    Google Scholar 

  12. J.B. Cui, K. Amtmann, J. Ristein, and L. Ley, J. Appl. Phys. 83, 7929 (1998).

    Article  CAS  ADS  Google Scholar 

  13. W.S. Li, Z.X. Shen, Z.C. Feng, and S.J. Chua, J. Appl. Phys. 87, 3332 (2000).

    Article  CAS  ADS  Google Scholar 

  14. H. Tang and I.P. Herman, Phys. Rev. B 43, 2299 (1991).

    Article  CAS  ADS  Google Scholar 

  15. D.Y. Song, M. Basavaraj, S.A. Nikishin, M. Holtz, V. Soukhoveev, A. Usikov, and V. Dmitriev, J. Appl. Phys. 100, 113504 (2006).

    Article  ADS  Google Scholar 

  16. R.R. Reeber and K. Wang, J. Mater. Res. 15, 40 (2000).

    Article  CAS  ADS  Google Scholar 

  17. M.S. Liu, L.A. Bursill, S. Prawer, K.W. Nugent, Y.Z. Tong, and G.Y. Zhang, Appl. Phys. Lett. 74, 3125 (1999).

    Article  CAS  ADS  Google Scholar 

  18. D.Y. Song, S.A. Nikishin, M. Holtz, V. Soukhoveev, A. Usikov, and V. Dmitriev, J. Appl. Phys. 101, 053535 (2007).

    Article  ADS  Google Scholar 

  19. M. Balkanski, R.F. Wallis, and E. Haro, Phys. Rev. B 28, 1928 (1983).

    Article  CAS  ADS  Google Scholar 

  20. A. Sarua, H. Ji, M. Kuball, M.J. Uren, T. Martin, K.J. Nash, K.P. Hilton, and R.S. Balmer, Appl. Phys. Lett. 88, 103502 (2006).

    Article  ADS  Google Scholar 

  21. C. Kisielowski, J. Krüger, S. Ruvimov, T. Suski, J.W. Ager III, E. Jones, Z. Liliental-Weber, M. Rubin, E.R. Weber, M.D. Bremster, and R.F. Davis, Phys. Rev. B 54, 17745 (1996).

    Article  CAS  ADS  Google Scholar 

Download references

Acknowledgements

We would like to thank Mr. Fillmer for financial support from Auburn University’s Natural Resources Management and Development Institute (NRMDI). The work was also partially funded by National Science Foundation through NCSU’s FREEDM Systems Center. A partial support from USDA through AUDFS is also greatly acknowledged. We also want to thank Mrs. Tamara Isaacs-Smith for her technical assistance and manuscript editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minseo Park.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, H., Alur, S., Wang, Y. et al. In Situ Raman Analysis of a Bulk GaN-Based Schottky Rectifier Under Operation. J. Electron. Mater. 39, 2237–2242 (2010). https://doi.org/10.1007/s11664-010-1304-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-010-1304-3

Keywords

Navigation