Skip to main content
Log in

High-Temperature Capacitor Based on Ca-Doped Bi0.5Na0.5TiO3-BaTiO3 Ceramics

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

High-temperature capacitors were prepared by the conventional oxide method based on Bi0.5Na0.5TiO3-BaTiO3-CaTiO3 (BNT-BT-CT) lead-free piezoelectric ceramics. BNT-BT is one of the promising candidates as a high-temperature relaxor, and has a high Curie temperature and broadened dielectric constant. The addition of CT increases the dielectric constant at lower temperatures and decreases the dielectric constant at higher temperatures, so that the variation of capacitance is decreased. The effect of BT on the temperature characteristic of dielectric constant is contrary to that of CT. A single-phase rhombohedral perovskite and square grains were obtained in this study. With the proper amount of BT and CT additions, the high-temperature specification can be met: from −55°C to 200°C, the variation of capacitance is within ±15% of room-temperature capacitance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. G.A. Smolenskii, V.A. Isupo, A.I. Agranovkskaya, and N.N. Krainik, Sov. Phys. Solid State 2, 2651 (1961).

    Google Scholar 

  2. J. Suchanicz, M.G. Gavshin, A.Y. Judzin, and C.Z. Kus, J. Mater. Sci. 36, 1981 (2001).

    Article  CAS  Google Scholar 

  3. H. Nagata, M. Yoshida, Y. Makiuchi, and T. Takenaka, Jpn. J. Appl. Phys. 42, 7401 (2003).

    Article  CAS  ADS  Google Scholar 

  4. C.R. Zhou, X.Y. Liu, and W.Z. Li, Mater. Sci. Eng. B 153, 31 (2008).

    Article  CAS  Google Scholar 

  5. D.M. Lin, K.W. Kwok, and H.L.W. Chan, Solid State Ionics 178, 1930 (2008).

    CAS  Google Scholar 

  6. P. Jarupoom, K. Pengpat, N. Pisitpipathsin, S. Eitssayeam, U. Intatha, G. Rujijanagul, and T. Tunkasiri, Curr. Appl. Phys. 8, 253 (2008).

    Article  ADS  Google Scholar 

  7. S. Danwittayakul, N. Vaneesorn, S. Jinawath, and A. Thanaboonsombut, Ceram. Int. 34, 765 (2008).

    Article  CAS  Google Scholar 

  8. T. Takenaka, K. Maruyama, and K. Sakata, Jpn. J. Appl. Phys. 30, 2236 (1991).

    Article  CAS  ADS  Google Scholar 

  9. S. Kuharuangrong, Ceram. Int. 33, 1403 (2007).

    Article  CAS  Google Scholar 

  10. Y. Yuan, S.R. Zhang, X.H. Zhou, B. Tang, and B. Li, J. Electron. Mater. 38, 706 (2009).

    Article  CAS  ADS  Google Scholar 

  11. J.B. Lim, S. Zhang, N. Kim, and T.R. Shrout, J. Am. Ceram. Soc. 92, 679 (2009).

    Article  CAS  Google Scholar 

  12. Y. Hiruma, R. Aoyagi, H. Nagata, and T. Takenaka, Jpn. J. Appl. Phys. 43, 7556 (2004).

    Article  CAS  ADS  Google Scholar 

  13. T.A. Jain, C.C. Chen, and K.Z. Fung, J. Eur. Ceram. Soc. (2009). doi:10.1016/j.jeurceramsoc.

  14. Y.H. Song and Y.H. Han, Jpn. J. Appl. Phys. 44, 6143 (2005).

    Article  CAS  ADS  Google Scholar 

  15. Y.S. Jung, E.S. Na, U. Paik, J. Lee, and J. Kim, Mater. Res. Bull. 37, 1633 (2002).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Yuan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yuan, Y., Zhou, X.H., Zhao, C.J. et al. High-Temperature Capacitor Based on Ca-Doped Bi0.5Na0.5TiO3-BaTiO3 Ceramics. J. Electron. Mater. 39, 2471–2475 (2010). https://doi.org/10.1007/s11664-010-1246-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-010-1246-9

Keywords

Navigation