Skip to main content
Log in

Passivation of Interfacial States for GaAs- and InGaAs/InP-Based Regrown Nanostructures

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

The interfacial charge density of regrown structures was studied for several␣different material systems: GaAs, InGaAs/InP, and InAlAs-InGaAs superlattice structures on InP. The particular application of interest is in the␣fabrication of nanoscale devices. Such structures require a very low density of interfacial charge at their exposed surfaces in order to avoid Fermi-level pinning and subsequent lateral carrier depletion across the structure. (110)-Oriented samples, mimicking the exposed sidewalls of nano-etched structures, were plasma-etched using a variety of gas-phase chemistries. The interfacial charge density at regrown interfaces was studied using capacitance–voltage (CV) and electrochemical CV techniques after in situ and ex situ pretreatments and epitaxial regrowth. The minimum interfacial charge densities obtained for these material systems were <1011 cm−2. Preferential regrowth around etched nanopillars was demonstrated for InP-based structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.D. Choquette, M. Hong, R.S. Freund, J.P. Mannaerts, R.C. Wetzel, and R.E. Leibenguth, IEEE Photonics Technol. Lett. 5, 284 (1993).

    Article  ADS  Google Scholar 

  2. J.V. Dilorenzo, J. Electrochem. Soc. 118, 1645 (1971).

    Article  CAS  Google Scholar 

  3. Y. Onho, P. Francis, M. Nogome, and Y. Takahashi, IEEE Trans. Electron. Dev. 46, 214 (1999).

    Article  ADS  Google Scholar 

  4. J.M. Ortion, Y. Cordier, J.C. Garcia, D. Adam, and M. Champagne, J. Cryst. Growth 170, 674 (1997).

    Article  ADS  CAS  Google Scholar 

  5. T.F. Kuech, E. Marshall, G.J. Scilla, R. Potemski, C.M. Ransom, and M.Y. Hung, J. Cryst. Growth 77, 539 (1986).

    Article  ADS  CAS  Google Scholar 

  6. S. Ikawa and M. Ogura, IEEE Photonics Technol. Lett. 9, 719 (1997).

    Article  ADS  Google Scholar 

  7. H. Schuler, M. Keller, M. Lipinski, K. Eberl, J. Weiss, and K.V. Klitzing, J. Vac. Sci. Technol. B 18, 1557 (2000).

    Article  CAS  Google Scholar 

  8. J.-L. Gentner, P. Jarry, and L. Goldstein, IEEE J. Sel. Top. Quantum Electron. 3, 845 (1997).

    Article  CAS  Google Scholar 

  9. T. Tsuchiya, T. Kitatani, K. Ouchi, H. Sato, and M. Aoki, Jpn. J. Appl. Phys. 43, L1247 (2004).

    Article  ADS  CAS  Google Scholar 

  10. D. Botez, G. Tsvid, M. D’Souza, M. Rathi, J.C. Shin, J. Kirch, L.J. Mawst, T. Kuech, I. Vurgaftman, J. Meyer, J. Plant, and G. Turner, SPIE J. Nanophotonics (Special Sect. Quantum Dots) 3, 031606 (2009).

  11. C.-F. Hsu, J.-S. O, P. Zory, and D. Botez, IEEE J. Sel. Top. Quantum Electron. 6, 491 (2000).

    Article  CAS  Google Scholar 

  12. G. Tsvid (Ph.D. Thesis, University of Wisconsin-Madison, 2008).

  13. S. Agarwala, O. King, S. Horst, R. Wilson, and D. Stone, J.␣Vac. Sci. Technol. A 17, 52 (1998).

    Article  ADS  Google Scholar 

  14. E.W. Berg and S.W. Pang, J. Electrochem. Soc. 146, 775 (1999).

    Article  CAS  Google Scholar 

  15. G. Franz, W. Hosler, and R. Treichler, J. Vac. Sci. Technol. B 19, 415 (2000).

    Article  CAS  Google Scholar 

  16. T. Ambridge, J.L. Stevenson, and R.M. Redstall, J. Electrochem. Soc.: Solid State Sci. Technol. 127, 222 (1980).

    CAS  Google Scholar 

  17. A.R. Clawson, Mater. Sci. Eng. 31, 1 (2001).

    Article  Google Scholar 

  18. R.T. Green, D.K. Walker, and C.M. Wolfe, J. Electrochem. Soc. 133, 2278 (1986).

    Article  CAS  Google Scholar 

  19. J. Etrillard, P. Ossart, G. Patriarche, M. Juhel, J.F. Bresse, and C. Daguet, J. Vac. Sci. Technol. A 15, 626 (1997).

    Article  ADS  CAS  Google Scholar 

  20. H. Hatate, M. Hashimoto, H. Shirakawa, Y. Fujiwara, Y.␣Takeda, H. Nakano, T. Tatsuta, and O. Tsuji, Jpn. J. Appl. Phys. 37, 7172 (1998).

    Article  ADS  CAS  Google Scholar 

  21. T. Suzuki, N. Haneji, K. Tada, Y. Shimogaki, and Y. Nakano, Jpn. J. Appl. Phys. 41, 15 (2002).

    Article  ADS  CAS  Google Scholar 

  22. P. Strasser, R. Wuest, F. Robin, D. Erni, and H. Jackel, J.␣Vac. Sci. Technol. B 25, 387 (2007).

    Article  CAS  Google Scholar 

  23. S. Sudo, Y. Nakano, M. Sugiyama, Y. Shimogaki, H. Komiyama, and K. Tada, Thin Solid Films 313–314, 604 (1998).

    Article  Google Scholar 

  24. J. Decobert and G. Patriarche, J. Appl. Phys. 92, 5749 (2002).

    Article  ADS  CAS  Google Scholar 

  25. J.G. Speight, ed., Lange’s Handbook of Chemistry (New␣York: McGraw-Hill, 2005).

    Google Scholar 

  26. D.D. Nolte, Solid State Electron. 33, 295 (1989).

    Article  ADS  Google Scholar 

  27. J.L.A. Alves, J. Hebenstreit, and M. Scheffler, Phys. Rev. B 44, 6188 (1991).

    Article  ADS  CAS  Google Scholar 

  28. J.L. Castano and J. Piqueras, J. Electrohem. Soc. 136, 1480 (1989).

    Article  Google Scholar 

  29. S.H. Jones and K.M. Lau, Appl. Phys. Lett. 53, 2068 (1988).

    Article  ADS  CAS  Google Scholar 

  30. M. Hong, H. Shu, R. Kwo, P. Tsai, Y. Chang, M. Huang, C.␣Chen, and T. Lin, J. Appl. Phys. 46, 3167 (2007).

    Article  CAS  Google Scholar 

  31. D. Botez, Proceedings of the Fifth International Symposium on Modern Problems of Laser Physics, 24–30 August, 2008, Novosibirsk, Russia (in press, 2009).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. K. Rathi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rathi, M.K., Tsvid, G., Khandekar, A.A. et al. Passivation of Interfacial States for GaAs- and InGaAs/InP-Based Regrown Nanostructures. J. Electron. Mater. 38, 2023–2032 (2009). https://doi.org/10.1007/s11664-009-0887-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-009-0887-z

Keywords

Navigation