Skip to main content
Log in

The Effect of Wet Etching on Surface Properties of HgCdTe

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

The surface of HgCdTe, grown by molecular-beam epitaxy and liquid-phase epitaxy, was studied by atomic force microscopy and x-ray photoelectron microscopy after etching in different solutions such as Br:methanol and HBr:H2O2:H2O. Minority-carrier lifetime and surface recombination velocity were measured by photoelectron decay spectroscopy. The same measurements were repeated after exposure to air for periods from 2 h to 2 days. Although these surfaces are rather complicated, the main feature is that Br-based etchants produce elemental Te at the surface, which oxidizes rapidly in air. Without elemental Te, there is less Te oxide, even after longer exposure to air. The existence of elemental Te is correlated with higher surface recombination velocity. This can be explained in terms of band bending and band offsets at Te/HgCdTe and TeO2/HgCdTe interfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.R. Becker, T.N. Casselman, C.H. Grein, and S. Sivananthan, Comprehensive Semiconductor Science and Technology Series, ed. P. Bhattacharya (Amsterdam: Elsevier, 2009) (to be published).

  2. Rogalski, A., Infrared Photon Detectors. 1995, Bellingham, Washington USA: SPIE Optical Engineering Press

    Google Scholar 

  3. A Rogalski, Journal of Alloys and Compounds 371, 53–57 (2004) doi:10.1016/j.jallcom.2003.06.005

    Article  CAS  Google Scholar 

  4. A. A. Buell, L. T. Pham, M. D. Newton, G. M. Venzor, E. M. Norton, E. P. Smith, J. B. Varesi, V. B. Harper, S. M. Johnson, R. A. Coussa, T. De Leon, J. A. Roth and J. E. Jensen, J. of Electron. Mater. 33, 662 (2004) doi:10.1007/s11664-004-0064-3

    Article  ADS  CAS  Google Scholar 

  5. S. Krisnamurthy, M. A. Berding, Z. G. Yu, J. Electron. Mater. 35, 1369 (2006) doi:10.1007/s11664-006-0270-2

    Article  ADS  Google Scholar 

  6. C. H. Grein, M. E. Flatte, Yong Chang, J. Electron. Mater. 37, 1415 (2007) doi:10.1007/s11664-008-0417-4

    Article  ADS  CAS  Google Scholar 

  7. D.D. Edwall, M. Zandian, A.C. Chen, and J.M. Arias, J. Electron. Mater. 26, 493 (1997) doi:10.1007/s11664-997-0183-8

    Article  ADS  CAS  Google Scholar 

  8. G.P. Carey, A.K. Wahi, J.A. Silberman, C.M. Stahle, and W.E. Spicer, J.A. Wilson, J. Vac. Sci. Technol. A5, 3203 (1987) doi:10.1116/1.574838

    Article  ADS  CAS  Google Scholar 

  9. D. E. Aspnes and H. Arwin, J. Vac. Sci. Technol. A 2, 1309 (1984) doi:10.1116/1.572400

    Article  ADS  CAS  Google Scholar 

  10. L. Colombo, G. H. Westphal, P. K. Liao, M. C. Chen, and H. F. Schaake, Proc. SPIE. 1683, 33 (1992) doi:10.1117/12.137777

    Article  ADS  CAS  Google Scholar 

  11. G. Badano, Y. Chang, J. W. Garland, S. Sivanathan, J. Electron. Mater. 33, 583 (2004) doi:10.1007/s11664-004-0050-9

    Article  ADS  CAS  Google Scholar 

  12. Y. Chang, J. Zhao, H. Abda, C. H. Grein, S. Sivanathan, T. Aoki, D. J. Smith, Appl. Phys. Lett. 86, 131924 (2005) doi:10.1063/1.1890471

    Article  ADS  CAS  Google Scholar 

  13. S. Velicu, T. S. Lee, C. H. Grein, P. Boieriu, Y. P. Chen, N. K. Dhar, J. Dinan, D. Lianos, J. Electron. Mater., 34, 820 (2005) doi:10.1007/s11664-005-0027-3

    Article  ADS  CAS  Google Scholar 

  14. Y. Chang, C.R. Becker, C.H. Grein, J. Zhao, C. Fulk, T. Casselman, R. Kiran, X.J. Wang, E. Robinson, S.Y. An, S. Mallick, S. Sivananthan, T. Aoki, C.Z. Wang, D.J. Smith, S. Velicu, J. Zhao, J. Crocco, Y. Chen, G. Brill, P.S. Wijewarnasuriya, N. Dhar, R. Sporken, and V. Nathan, J. Electron. Mater., 37, 1171(2008) doi:10.1007/s11664-008-0477-5

    Article  ADS  CAS  Google Scholar 

  15. R. Kiran (Ph.D. Thesis, Chicago, 2007).

  16. R. Kiran, R. Sporken, T. N. Casselman, P.Y. Emelie, R. Kodama, Y. Chang, F. Aqariden, S. Velicu, J. Zhao, S. Sivananthan, J. Electron. Mater. 37, 1471 (2008) doi:10.1007/s11664-008-0494-4

    Article  ADS  CAS  Google Scholar 

  17. S.S. Li, Semiconductor Physical Electronics, Plenum, First Edition, 1993

    Google Scholar 

  18. J. B. Varesi, J. D. Benson, M. Jaime-Vasquez, M. Martinka, A. J. Stoltz and J. H. Dinan, J. Electron. Mater., 35, 1443 (2006) doi:10.1007/s11664-006-0281-z

    Article  ADS  CAS  Google Scholar 

  19. David R. Rhiger, Robert E. Kvaas, J. Vac. Sci. Technol. A, 1, 1712 (1983) doi:10.1116/1.572214

    Article  ADS  CAS  Google Scholar 

  20. L.S. Hirsch, R. Haakenaasen, T. Colin, K.S. Ziemer, C.D. Stinespring, S. Lovold, and T.H. Myers, J. Electron. Mater. 28, 810 (1999) doi:10.1007/s11664-999-0075-1

    Article  ADS  CAS  Google Scholar 

  21. M. Seelmann-Eggebert and H.J. Richter, J.Vac. Sci. Technol. A6, 2699 (1988) doi:10.1116/1.575534

    Article  ADS  CAS  Google Scholar 

  22. M.P. Seah and W.A. Dench, Surf. Interface. Anal., 1, 2 (1979) doi:10.1002/sia.740010103

    Article  CAS  Google Scholar 

  23. J.H. Scofield, J. Electron. Spectrosc. Rel. Phenomena 8, 129 (1976) doi:10.1016/0368-2048(76)80015-1

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Sporken.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sporken, R., Kiran, R., Casselman, T. et al. The Effect of Wet Etching on Surface Properties of HgCdTe. J. Electron. Mater. 38, 1781–1789 (2009). https://doi.org/10.1007/s11664-009-0844-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-009-0844-x

Keywords

Navigation