Skip to main content
Log in

Kinetics of Diffusion-Induced Recrystallization in the Cu(Ni) System at Low Temperatures

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

During annealing at temperatures around 800 K, Ni can quickly penetrate into Cu due to diffusion-induced recrystallization (DIR). To examine this penetration rate, the kinetics of DIR in the Cu(Ni) system was experimentally determined in the present study. Experiments were conducted using polycrystalline Cu/Ni/Cu diffusion couples which were prepared by a diffusion bonding technique. The diffusion couples were isothermally annealed at temperatures of T = 723 K to 823 K for various times up to t = 144 h. During annealing, a region alloyed with Ni is formed in Cu from the Cu/Ni interface due to DIR. The concentration of Ni on the Ni-rich side in the DIR region remains almost constant independent of the annealing time, but gradually increases with increasing annealing temperature. However, the mean thickness of the DIR region increased with increasing annealing time. The growth rate of the DIR region is a monotonically increasing function of the annealing temperature. The experimental findings of the kinetics study were quantitatively analyzed using a mathematical model. The analysis indicates that the growth of the DIR region is controlled by the interface reaction at the moving boundary of the DIR region as well as the boundary diffusion along the grain boundaries across the DIR region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Zakraysek, Weld. Res. Supplement(Nov), 536 (1972)

  2. K.N. Tu, Acta Metall. 21, 347 (1973) doi:10.1016/0001-6160(73)90190-9

    Article  CAS  Google Scholar 

  3. M. Onishi, H. Fujibuchi, Trans. JIM 16, 539 (1975)

    CAS  Google Scholar 

  4. H.N. Keller, IEEE Trans. Compon. Hybrids. Manuf. Tech. CHMT-2, 180 (1979)

  5. H.N. Keller, J.M. Morabito. Surf. Interface Anal. 3, 16 (1981) doi:10.1002/sia.740030108

    Article  CAS  Google Scholar 

  6. J.O.G. Parent, D.D.L. Chung, I.M. Bernstein, J. Mater. Sci. 23, 2564 (1988) doi:10.1007/BF01111916

    Article  CAS  Google Scholar 

  7. A.J. Sunwoo, J.W. Morris Jr., G.K. Lucey Jr., Metall. Trans. A 23A, 1323 (1992)

    CAS  Google Scholar 

  8. P.T. Vianco, P.F. Hlava, A.L. Kilgo, J. Electron. Mater. 23, 583 (1994) doi:10.1007/BF02653343

    Article  CAS  Google Scholar 

  9. D.R. Frear, P.T. Vianco, Metall. Trans. A 25A, 1509 (1994) doi:10.1007/BF02665483

    Article  CAS  Google Scholar 

  10. S. Choi, T.R. Bieler, J.P. Lucas, K.N. Subramanian, J. Electron. Mater. 28, 1209 (1999) doi:10.1007/s11664-999-0159-y

    Article  CAS  Google Scholar 

  11. P.G. Kim, K.N. Tu, J. Appl. Phys. 80, 3822 (1996) doi:10.1063/1.363336

    Article  CAS  Google Scholar 

  12. A.M. Minor, J.W. Morris Jr, Metall. Mater. Trans. A 31A, 798 (2000) doi:10.1007/s11661-000-0022-5

    Article  CAS  Google Scholar 

  13. J.H. Lee, J.H. Park, Y.H. Lee, Y.S. Kim, J. Mater. Res. 16, 1249 (2001) doi:10.1557/JMR.2001.0175

    Article  CAS  Google Scholar 

  14. H.G. Song, J.P. Ahn, A.M. Minor, J.W. Morris Jr, J. Electron. Mater. 30, 409 (2001) doi:10.1007/s11664-001-0052-9

    Article  CAS  Google Scholar 

  15. M.O. Alam, Y.C. Chan, Chem. Mater. 15, 4340 (2003) doi:10.1021/cm034692c

    Article  CAS  Google Scholar 

  16. M.O. Alam, Y.C. Chan, J. Mater. Res. 19, 1303 (2004) doi:10.1557/JMR.2004.0170

    Article  CAS  Google Scholar 

  17. T. Takenaka, S. Kano, M. Kajihara, N. Kurokawa, K. Sakamoto, Mater. Sci. Eng. A 396, 115 (2005) doi:10.1016/j.msea.2005.01.025

    Article  Google Scholar 

  18. M. Mita, M. Kajihara, N. Kurokawa, K. Sakamoto, Mater. Sci. Eng. A 403, 269 (2005) doi:10.1016/j.msea.2005.05.012

    Article  Google Scholar 

  19. T.B. Massalski, H. Okamoto, P.R. Subramanian, and L. Kacprzak, Binary Alloy Phase Diagrams, vol. 2 (Materials Park, OH: ASM International, 1990), p. 1444.

  20. F.J.A. den Broeder, S. Nakahara, Scr. Metall. 17, 399 (1983) doi:10.1016/0036-9748(83)90181-3

    Article  Google Scholar 

  21. D. Liu, W.A. Miller, K.T. Aust, Acta Metall. 37, 3367 (1989) doi:10.1016/0001-6160(89)90209-5

    Article  CAS  Google Scholar 

  22. C.Y. Ma, E. Rabkin, W. Gust, S.E. Hsu, Acta Metall. Mater. 43, 3113 (1995) doi:10.1016/0956-7151(95)00011-J

    Article  CAS  Google Scholar 

  23. Y. Kawanami, M. Kajihara, Netsushori 37, 67 (1997)

    CAS  Google Scholar 

  24. Y. Kawanami, M. Nakano, M. Kajihara, T. Mori, Mater. Trans. JIM 39, 218 (1998)

    CAS  Google Scholar 

  25. Y. Yamamoto, S. Uemura, and M. Kajihara, Proc. Int. Conf. Solid-Solid Phase Transformations, Kyoto, Japan, May 24–28 (Sendai: Japan Inst. Metals, 1999), p. 593.

  26. Y. Yamamoto, S. Uemura, M. Kajihara, Mater. Sci. Eng. A 312, 176 (2001) doi:10.1016/S0921-5093(00)01889-X

    Article  Google Scholar 

  27. Y. Yamamoto, S. Uemura, K. Yoshida, M. Kajihara, Mater. Sci. Eng. A 333, 262 (2002) doi:10.1016/S0921-5093(01)01847-0

    Article  Google Scholar 

  28. S.M. Schwarz, B.W. Kempshall, L.A. Giannuzzi, Acta Mater. 51, 2765 (2003)

    CAS  Google Scholar 

  29. P.G. Shewmon, Diffusion in Solids (New York: McGraw-Hill, 1963), p. 14.

  30. W.A. Johnson, Trans. AIME 166, 114 (1946)

    Google Scholar 

  31. L.S. Darken, Trans. AIME 175, 184 (1948)

    Google Scholar 

  32. G.S. Hartley, Trans. Faraday Soc. 27, 10 (1931) doi:10.1039/tf9312700010

    Article  Google Scholar 

  33. Japan Inst. Metals, Metals Data Book (Tokyo: Maruzen, 1993), p. 21.

  34. M. Kajihara, Scr. Mater. 54, 1767 (2006) doi:10.1016/j.scriptamat.2006.01.035

    Article  CAS  Google Scholar 

  35. M. Hillert, Computer Modeling of Phase Diagrams, ed. L.H. Bennett (Warrendale, PA: TMS-AIME, 1986), p. 1.

  36. A. Jansson, TRITA-MAC 340 (Royal Institute of Technology, Stockholm, 1987).

  37. Y. Yamamoto, M. Kajihara, Mater. Trans. 42, 1763 (2001) doi:10.2320/matertrans.42.1763

    Article  CAS  Google Scholar 

  38. M. Hillert, Lectures on the Theory of Phase Transformations, 2nd ed., ed. H.I. Aaronson (Warrendale, PA: TMS-AIME, 1999), p. 1.

  39. S. Nishikawa, Introduction to Metallurgy (Tokyo: AGNE, 2001), p. 530.

  40. S. Yukawa, M.J. Sinnott, Trans. AIME 203, 996 (1955)

    Google Scholar 

  41. A.E. Austin, N.A. Richard, J. Appl. Phys. 32, 1462 (1961) doi:10.1063/1.1728380

    Article  CAS  Google Scholar 

  42. T.J. Renouf, Philos. Mag. 22, 359 (1970) doi:10.1080/14786437008228229

    Article  CAS  Google Scholar 

  43. A.N. Aljeshin, S.I. Prokofjev, Poverkhnost Fiz. Khimiya Mechanika 9, 131 (1986)

    Google Scholar 

  44. T. Mori, T. Ishii, M. Kajihara, M. Kato, Philos. Mag. Lett. 75, 367 (1997) doi:10.1080/095008397179435

    Article  CAS  Google Scholar 

  45. Y. Tejima (Master Eng. Thesis, Tokyo Institute of Technology, 2008)

  46. Y. Yamamoto, M. Kajihara, Acta Mater. 47, 1195 (1999) doi:10.1016/S1359-6454(98)00426-1

    Article  CAS  Google Scholar 

  47. Y. Yamamoto, M. Moriyama, M. Kajihara, T. Mori. Acta Mater. 47, 1757 (1999) doi:10.1016/S1359-6454(99)00053-1

    Article  CAS  Google Scholar 

  48. N. Goukon, T. Ikeda, M. Kajihara, Acta Mater. 48, 1551 (2000) doi:10.1016/S1359-6454(99)00424-3

    Article  CAS  Google Scholar 

  49. S.M. Klotsman, Y.A. Rabovskiy, V.K. Talinskiy, A.N. Timofeyev, Phys. Metab. Metallogr. 28, 66 (1969)

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to Messrs S. Uemura and K. Yoshida with Graduate School at Tokyo Institute of Technology, Japan for assistance in the early stages of the present study. They also wish to thank Dr. N.D. Evans at Oak Ridge National Laboratory, USA for valuable comments. The study was supported by the Iketani Science and Technology Foundation in Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Kajihara.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamamoto, Y., Kajihara, M. Kinetics of Diffusion-Induced Recrystallization in the Cu(Ni) System at Low Temperatures. J. Electron. Mater. 37, 1710–1720 (2008). https://doi.org/10.1007/s11664-008-0535-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-008-0535-z

Keywords

Navigation