Skip to main content
Log in

Effects of Bi and Pb on oxidation in humidity for low-temperature lead-free solder systems

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The oxidation behavior of various Sn-Zn(-Bi) alloys during 60°C/90% and 85°C/85% relative humidity (RH) exposure were investigated by microstructure observation and x-ray diffraction analysis. The mechanical property of the joints of resistor chips (1608R) with two kinds of terminations, Sn and Sn-10Pb, soldered on a printed circuit board with Sn-Zn(-Bi) were evaluated by a shear test. The heat/humidity exposure of Sn-Zn alloys promotes segregation into the grain boundary accompanying oxidation of Zn resulting in the ZnO formation. This segregation induces serious degradation of alloys and Sn whisker growth. Heat/humidity exposure of 85°C/85%RH seriously decreases the shear strength of the surface mounted chip joints, especially Sn-Zn-Bi solder, due to the formation of ZnO at the interface between the solder and the reaction layer. The presence of Bi or Pb in Sn-Zn alloys enhances the diffusion, resulting in severe degradation at 85°C/85%RH exposure. In contrast, the exposure at 60°C/90%RH does not influence the joint strength for up to 1000 h. Under this condition, the oxidation of Zn only reaches a few microns in depth from the free surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. McCormack and S. Jin, JOM 45, 36 (1993).

    CAS  Google Scholar 

  2. C. Melton, JOM 45, 33 (1993).

    CAS  Google Scholar 

  3. K. Suganuma, Y. Nakamura, and K. Nihara, J. Mater. Res. 13, 2859 (1998).

    CAS  Google Scholar 

  4. E.P. Wood and K.L. Nimmo, J. Electron. Mater. 23, 709 (1994).

    CAS  Google Scholar 

  5. M.E. Loomans, S. Vaynman, G. Gosh, and M.E. Fine, J. Electron. Mater. 23, 741 (1994).

    CAS  Google Scholar 

  6. K. Suganuma, T. Murata, H. Noguchi, and Y. Toyoda, J. Mater. Res. 15, 884 (2000).

    CAS  Google Scholar 

  7. K.-S. Kim, Y.-S. Kim, K. Suganuma, and H. Nakajima, J. Jpn. Inst. Electron. Packaging 5, 666 (2002).

    CAS  Google Scholar 

  8. S.W. Yoon, W.K. Choi, and H.M. Lee, Scripta Mater. 40, 327 (1999).

    Article  CAS  Google Scholar 

  9. T. Kiga, S. Hattori, and Y. Iwanabe, J. Jpn. Inst. Electron. Packaging 6, 420 (2003).

    CAS  Google Scholar 

  10. M. Kitajima, T. Shono, T. Ogino, T. Kobayashi, K. Yamazaki, and M. Noguchi, J. Jpn. Inst. Electron. Packaging 6, 433 (2003).

    CAS  Google Scholar 

  11. K. Young-Sun, C.W. Hwang, and K. Suganuma, Proc. Int. Conf. on Electronics Packaging (2001 ICEP) (Tokyo, Japan: Japan Institute of Electronics Packaging/IMAPS, 2001), pp. 84–87.

    Google Scholar 

  12. M. Abtew and G. Selvaduray, Mater. Sci. Eng. 27, 95 (2000).

    Article  Google Scholar 

  13. U. Lindborg, Acta Metall. 24, 181 (1976).

    Article  CAS  Google Scholar 

  14. K.N. Tu, Phys. Rev. B: Condens. Matter Mater. Phys. 49, 2030 (1994).

    CAS  Google Scholar 

  15. K.N. Tu, Mater. Chem. Phys. 46, 217 (1996).

    Article  CAS  Google Scholar 

  16. B.Z. Lee and D.N. Lee, Acta Mater. 46, 3701 (1998).

    Article  CAS  Google Scholar 

  17. K.W. Moon, M.E. Williams, C.E. Johnson, and G.R. Stafford, C.A. Handwerker, and W.J. Boettinger, Proc. 4th Pacific Rim Int. Conf. on Advanced Materials and Processing (Sendai, Japan: Japan Institute of Metals, 2001), pp. 1115–1118.

    Google Scholar 

  18. R. Schety, Circ. World 27-2, 17 (2001).

    Article  Google Scholar 

  19. T. Nagai, K. Natori, and T. Furusawa, J. Jpn. Inst. Met. 53, 303 (1989).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, KS., Matsuura, T. & Suganuma, K. Effects of Bi and Pb on oxidation in humidity for low-temperature lead-free solder systems. J. Electron. Mater. 35, 41–47 (2006). https://doi.org/10.1007/s11664-006-0182-1

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-006-0182-1

Key words

Navigation