Skip to main content
Log in

Ultralow-k silicon containing fluorocarbon films prepared by plasma-enhanced chemical vapor deposition

  • Regular Issue Paper
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Low dielectric constant materials as interlayer dielectrics (ILDs) offer a way to reduce the RC time delay in high-performance ultra-large-scale integration (ULSI) circuits. Fluorocarbon films containing silicon have been developed for interlayer applications below 50-nm linewidth technology. The preparation of the films was carried out by plasma-enhanced chemical vapor deposition (PECVD) using gas precursors of tetrafluorocarbon as the source of active species and disilane (5 vol.% in helium) as a reducing agent to control the ratio of F/C in the films. The basic properties of the low dielectric constant (low-k) interlayer dielectric films are studied as a function of the fabrication process parameters. The electrical, mechanical, chemical, and thermal properties were evaluated including dielectric constant, surface planarity, hardness, residual stress, chemical bond structure, and shrinkage upon heat treatments. The deposition process conditions were optimized for film thermal stability while maintaining a relative dielectric value as low as 2.0. The average breakdown field strength was 4.74 MV/cm. The optical energy gap was in the range 2.2–2.4 eV. The hardness and residual stress in the optimized processed SiCF films were, respectively, measured to be in the range 1.4–1.78 GPa and in the range 11.6–23.2 MPa of compressive stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Semiconductor Industry Association, “The International Technology Roadmap for Semiconductors” (1999); 2000 Update (2000); 2004 Update (2004).

  2. R. Liu, C.S. Pai, and E. Martinez, Solid-State Electron. 43, 1000 (1999).

    Google Scholar 

  3. R. Miller, Science 286, 421 (1999).

    Article  CAS  Google Scholar 

  4. L. Peters, Semiconductor Int. Sept., 64 (1998).

  5. L. Peters, Semiconductor Int. Jan., 46 (1999).

  6. T. Homma, Mater. Sci. Eng. R23, 243 (1998).

    CAS  Google Scholar 

  7. Semiconductor Industry Association, “The National Technology Roadmap for Semiconductors” (1997).

  8. L. Peters, Semiconductor Int. May, 66 (2001).

  9. P. Singer, Semiconductor Int. Nov., 67 (1997).

  10. P. Singer, Semiconductor Int. Nov., 53 (1994).

  11. L. Peters, Semiconductor Int. 22, 56 (1999).

    Google Scholar 

  12. R. d’Agostino, F. Cramarossa, F. Francassi, and F. Illuzz, Plasma Deposition, Treatment, and Etching of Polymers (New York: Academic Press, 1990), pp. 95–162.

    Google Scholar 

  13. E. Kay, J. Coburn, and A. Dilks, Top. Curr. Chem. 91, 1 (1980).

    Google Scholar 

  14. H. Biederman and Y. Osada, Plasma Polymerization Processes—Plasma Technology, (New York: Elsevier, 1992), vol. 3, pp. 9–125.

    Google Scholar 

  15. J. Song (Ph.D. dissertation, Louisiana State University, 1996).

  16. N.M. Mackie, N.F. Dulleska, D.G. Castner, and E.R. Fisher, Chem. Mater. 9, 349 (1997).

    Article  CAS  Google Scholar 

  17. N.B. Colthup, L.H. Daly, and S.E. Wiberly, Introduction to Infrared and Raman Spectroscopy, 3rd ed. (New York: Academic Press, 1990), pp. 335–458.

    Google Scholar 

  18. P.F. Wang, S.J. Ding, J.Y. Zhang, D.W. Zhang, J.T. Wang, and W.W. Lee, Appl. Phys., A 72, 721 (2001).

    Article  ADS  CAS  Google Scholar 

  19. Y.Y. Jin, K. Kim, and G.S. Lee, J. Vac. Sci. Technol. B 19, 314 (2001).

    Article  CAS  Google Scholar 

  20. S. Agraharam, D.W. Hess, P.A. Kohl, and S. Allen, J. Vac. Sci. Technol. A 17, 3265 (1999).

    Article  ADS  CAS  Google Scholar 

  21. S. Agraharam (Ph.D. dissertation, Georgia Institute of Technology, 2000).

  22. D.S. Kim, Y.H. Lee, and N. Park, Appl. Phys. Lett. 69, 2776 (1996).

    Article  ADS  CAS  Google Scholar 

  23. Z. An, R.K. Y. Fu, P. Chen, W. Liu, P.K. Chu, and C. Lin, J. Vac. Sci. Technol. B 21, 1375 (2003).

    Article  CAS  Google Scholar 

  24. K. Endo and T. Tatsumi, J. Appl. Phys. 78, 1370 (1995).

    Article  ADS  CAS  Google Scholar 

  25. H. Yokomichi and T. Hayashi, Appl. Phys. Lett. 72, 2704 (1998).

    Article  ADS  CAS  Google Scholar 

  26. K. Endo and T. Tatsumi, Appl. Phys. Lett. 68, 2864 (1996).

    Article  ADS  CAS  Google Scholar 

  27. A. Grill, V. Patel, and C. Jahnes, J. Electrochem. Soc. 145, 1649 (1998).

    Article  CAS  Google Scholar 

  28. K. Endo and T. Tatsumi, Appl. Phys. Lett. 68, 3656 (1996).

    Article  ADS  CAS  Google Scholar 

  29. J. W. Yi, Y.H. Lee, and B. Farouk, Thin Solid Films 374, 103 (2000).

    Article  CAS  Google Scholar 

  30. K. Kim, D.H. Kwon, G. Nallapati, and G.S. Lee, J. Vac. Sci. Technol. A 16, 1509 (1998).

    Article  ADS  CAS  Google Scholar 

  31. D.K. Schroder, Semiconductor Material and Device Characterization (Wiley Interscience, 1990), pp. 448–469.

  32. I. Umezu, K. Miyamoto, N. Sakamoto, and K. Maeda, Jpn. J. Appl. Phys. 34, 1753 (1995).

    Article  CAS  Google Scholar 

  33. H.C. Lee and S. Lee, J. Kor. Phys. Soc. 39, S30 (2001).

  34. X. He, S. Lee, I. Bello, A. Cheung, W. Li, D. Chiu, Y. Lam, C. Lee, K. Leung, and X. Zhou, J. Mater. Res. 14, 1617 (1999).

    ADS  CAS  Google Scholar 

  35. Tauc, Amorphous and Liquid Semiconductors (New York: Plenum, 1974), pp. 159–214.

    Google Scholar 

  36. M. Bass, E. W. Van Stryland, D. Williams, and W. Wolfe, Handbook of Optics, (New York: McGraw-Hill, 1995), pp. 11-16–11-22.

    Google Scholar 

  37. B.G. Streetman, Solid State Electronic Devices, 2nd ed. (New York: Prentice-Hall, 1980), pp. 93–99.

    Google Scholar 

  38. E.A. Davis and N.F. Mott, Philos. Mag. 22, 903 (1970).

    CAS  Google Scholar 

  39. E. Pascual, C. Serra, and E. Bertran, J. Appl. Phys. 70, 5119 (1991).

    Article  ADS  CAS  Google Scholar 

  40. Y. Chao, N. Whao-Yuan, C. Shan-Hua, and W. Xiang-ying, Acta Phys. Sinica 51, 2640 (2002).

    Google Scholar 

  41. Y. Chao, N. Zhao-Yuan, C. Shan-Hua, X. Yu, and X. Sheng-Hua, Acta Phys. Sinica 53 (5), 1500 (2004).

    Google Scholar 

  42. C. Ye, Z. Ning, S. Cheng, Y. Xin, and S. Xu, Diam. Relat. Mater. 13, 191 (2004).

    Article  CAS  Google Scholar 

  43. K.S. Oh, S. Jing, and C.K. Choi, J. Kor. Phys. Soc. 39, 291 (2001).

    CAS  Google Scholar 

  44. J. Robertson and E. O’Reilly, Phys. Rev. B 35, 2946 (1987).

    Article  ADS  CAS  Google Scholar 

  45. K. Fabisiak, S. Orzeszko, F. Rozploch, and J. Szatkowski, J. Non-Cryst. Solids 99, 12 (1998).

    Article  Google Scholar 

  46. G. Compagnini, G. Foti, and R. Reitano, Appl. Phys. Lett. 57, 2546 (1990).

    Article  ADS  CAS  Google Scholar 

  47. X. Wang, H.R. Harris, K. Bouldin, H. Temkin, S. Gangopadhyay, M.D. Strathman, and M. West, J. Appl. Phys. 87, 621 (2000).

    Article  ADS  CAS  Google Scholar 

  48. B. Dischier, A. Bubenzer, and P. Koidl, Appl. Phys. Lett. 42, 636 (1983).

    Article  ADS  Google Scholar 

  49. S.F. Durrant, S. Castro, LE Bolivar-Marinex, D.S. Galvao, and M.A. Bica de Moraes, Thin Solid Films 304, 149 (1997).

    Article  CAS  Google Scholar 

  50. M.R. Van Landingham, J. Villarrubia, W. Guthrie, and G. Meyers, Macromol. Symp. 167, 15 (2001).

    Article  Google Scholar 

  51. Y.T. Chong and Y.W. Chung, 2003 SURE Report (2003).

  52. J. Robertson, Mater. Sci. Eng. R-Rep. 37, 129 (2002).

    Article  Google Scholar 

  53. S.P. Murarka, Metallization—Theory and Practice for VLSI and ULSI (London: Butterworth-Heinemann, 1992), pp. 74–86.

    Google Scholar 

  54. T.M. Moore, C. Hartfield, J. Anthony, B. Ahlburn, P. Ho, and M. Miller, Characterization and Metrology for ULSI Technology 2000 Int. Conf. (2001), p. 431.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jin, Y., Ajmera, P.K., Lee, G.S. et al. Ultralow-k silicon containing fluorocarbon films prepared by plasma-enhanced chemical vapor deposition. J. Electron. Mater. 34, 1193–1205 (2005). https://doi.org/10.1007/s11664-005-0264-5

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-005-0264-5

Key words

Navigation