Skip to main content
Log in

Nitrogen-doped Ge2Sb2Te5 films for nonvolatile memory

  • Regular Issue Paper
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Nitrogen-doped Ge2Sb2Te5 (GST) films for nonvolatile memories were prepared by reactive sputtering with a GST alloy target. Doped nitrogen content was determined by using x-ray photoelectron spectroscopy (XPS). The crystallization behavior of the films was investigated by analyzing x-ray diffraction (XRD) and differential scanning calorimetry (DSC). Results show that nitrogen doping increases crystallization temperature, crystallization-activation energy, and phase transformation temperature from fcc to hexagonal (hex) structure. Doped nitrogen probably exists in the grain vacancies or grain boundaries and suppresses grain growth. The electrical properties of the films were studied by analyzing the optical band gap and the dependence of the resistivity on the annealing temperature. The optical band gap of the nitrogen-doped GST film is slightly larger than that of the pure GST film. Energy band theory is used to analyze the effect of doped nitrogen on electrical properties of GST films. Studies reveal that nitrogen doping increases resistivity and produces three relatively stable resistivity states in the plot of resistivity versus annealing temperature, which makes GST-based multilevel storage possible. Current-voltage (I-V) characteristics of the devices show that nitrogen doping increases the memory’s dynamic resistance, which reduces writing current from milliampere to microampere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Qiao, Y. Lai, J. Feng, Y. Ling, Y. Lin, T. Tang, B. Cai, and B. Chen, J. Mater. Sci. Technol. 21, 95 (2005).

    CAS  Google Scholar 

  2. Y.N. Hwang et al., IEDM Tech. Dig. 893 (2003).

  3. S. Lai, IEDM Tech. Dig. 255 (2003).

  4. T.H. Jeong, M.R. Kim, H. Seo, J.W. Park, and C. Yeon, Jpn J. Appl. Phys. 39, 2775 (2000).

    Article  CAS  Google Scholar 

  5. R. Kojima, S. Okabayashi, T. Kashihara, K. Horai, T. Matsunaga, E. Ohno, N. Yamada, and T. Ohta, Jpn. J. Appl. Phys. 37, 2098 (1998).

    Article  CAS  Google Scholar 

  6. S.J. Kim, H. Seo, and M.R. Kim, Jpn. J. Appl. Phys. 38, 1713 (1999).

    Article  CAS  Google Scholar 

  7. H. Seo, T.H. Jeong, J.W. Park, C. Yeon, S.J. Kim, and S.Y. Kim, Jpn. J. Appl. Phys. 39, 745 (2000).

    Article  CAS  Google Scholar 

  8. S. Kyrsta, R. Cremer, D. Neuschutz, M. Laurenzis, P.H. Bolivar, and H. Kurz, Appl. Surf. Sci. 55, 179 (2001).

    Google Scholar 

  9. H.E. Kissinger, Anal. Chem. 29, 1702 (1957).

    Article  CAS  Google Scholar 

  10. I.I. Petrov, R.M. Imamov, and Z.G. Pinsker, Sov. Phys. Crystallogr. 13, 339 (1968).

    Google Scholar 

  11. N. Yamada and T. Matsunaga, J. Appl. Phys. 88, 7020 (2000).

    Article  CAS  Google Scholar 

  12. T. Nonaka, G. Ohbayashi, Y. Toriumi, Y. Mori, and H. Hashimoto, Thin Solid Films 370, 258 (2000).

    Article  CAS  Google Scholar 

  13. N. Yamada, MRS Bull. 21, 48 (1996).

    CAS  Google Scholar 

  14. R. Kojima, T. Kouzaki, T. Matsunaga, and N. Yamada, Proc. SPIE Int. Soc. Opt. Eng. 3401, 14 (1998).

    CAS  Google Scholar 

  15. H.B. Yao, L.P. Shi, T.C. Chong, P.K. Tan, and X.S. Miao, Jpn J. Appl. Phys. 42, 828 (2003).

    Article  CAS  Google Scholar 

  16. M. Kastner, Phys. Rev. B 7, 5237 (1973).

    Article  CAS  Google Scholar 

  17. H. Hoffmann, Festkor. A. S. 22, 255 (1982).

    CAS  Google Scholar 

  18. M. Kastner, D. Adler, and H. Fritzsche, Phys. Rev. Lett. 37, 1504 (1976).

    Article  CAS  Google Scholar 

  19. A. Pirovano, A.L. Lacaita, F. Pellizzer, S.A. Kostylev, and A. Benvenuti, IEEE. T. Electron. Dev. 51, 714 (2004).

    Article  Google Scholar 

  20. S.R. Ovshinsky and W. Czubatyj, Proc. SPIE Int. Soc. Opt. Eng. 4085, 15 (2001).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lai, Y., Qiao, B., Feng, J. et al. Nitrogen-doped Ge2Sb2Te5 films for nonvolatile memory. J. Electron. Mater. 34, 176–181 (2005). https://doi.org/10.1007/s11664-005-0230-2

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-005-0230-2

Key words

Navigation