Skip to main content
Log in

Impression creep characterization of 90Pb-10Sn microelectronic solder balls at subsolvus and supersolvus temperatures

  • Regular Issue Paper
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The creep behavior of Pb-10wt.%Sn, a common high-lead solder used in microelectronic packaging, was studied by impression creep testing of ball-gridarray (BGA) solder balls attached to an organic substrate, both above and below the solvus temperature (408 K). Below the solvus temperature, the solder microstructure consists of roughly equiaxed grains of the Pb-rich solid solution α, which contains <5wt.%Sn in solution, with a coarse dispersion of Sn-rich β precipitates. Here, the creep behavior of the solder is controlled by dislocation climb via dislocation core diffusion, yielding n≈4 and Q≈60 kJ/mole. Above the solvus temperature, where the entire 10wt.%Sn is in solution, the creep mechanism becomes controlled by viscous glide of dislocations, limited by solute drag, with n≈3 and Q≈92 kJ/mole. Based on experimental data, creep equations for the as-reflowed solder in the two temperature regimes are given. Comparison of the present data with those available in the literature showed good agreement with the proposed laws.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Wen, L.M. Keer, S. Vaynman, and L. Lawson, IEEE Trans. Comp. Packaging Technol. 25, 23 (2002).

    Article  Google Scholar 

  2. V. Sarihan, Trans. ASME 115, 16 (1993).

    Google Scholar 

  3. I. Dutta, A. Gopinath, and C. Marshall, J. Electron. Mater. 31, 253 (2002).

    CAS  Google Scholar 

  4. K.N. Tu and D. Turnbull, Metall. Trans. 2, 1263 (1971).

    Article  Google Scholar 

  5. J. Weertman, Trans. AIME 218, 207 (1960).

    CAS  Google Scholar 

  6. T.T. Fang, R. Rao Kola, and K.L. Murty, Metall. Trans. A 17A, 1447 (1986).

    CAS  Google Scholar 

  7. H.J. Frost, R.T. Howard, P.R. Lavery, and S.D. Lutender, IEEE Trans., Comp. Hybr. Manufacturing Technol. 11, 371 (1988).

    Article  CAS  Google Scholar 

  8. R. Darveaux and K. Banerji, IEEE Trans., Comp. Hybr. Manufacturing Technol. 15, 1013 (1992).

    Article  CAS  Google Scholar 

  9. J.H. Lau and Y.-H. Pao, Solder Joint Reliability of BGA, CSP, Flip Chip, and Fine Pitch SMT Assemblies (New York: McGraw-Hill, 1997), p. 122.

    Google Scholar 

  10. Y. Huang and T.G. Langdon, JOM 55, 15 (2003).

    Google Scholar 

  11. Z. Horita and T.G. Langdon, Proc. 7th Int. Conf. Strength of Metals and Alloys (ICSMA 7), ed. H.J. McQueen et al. (Oxford, United Kingdom: Pergamon Press, 1985), vol. 1, pp. 797–802.

    Google Scholar 

  12. F.A. Mohamed and T.G. Langdon, Acta Metall. 22, 779 (1974).

    Article  CAS  Google Scholar 

  13. O.A. Anastasio (Master’s Thesis, Naval Postgraduate School, 2002).

  14. F. Ochoa, J.J. Williams, and N. Chawla, J. Electron. Mater. 32, 1414 (2003).

    Article  CAS  Google Scholar 

  15. H. Yang, P. Deane, P. Magill, and K.L. Murty, Proc. ECTC 1136 (1996).

  16. I. Dutta, C. Park, and S. Choi, Mater. Sci. Eng. A A379, 401 (2004).

    CAS  Google Scholar 

  17. J.C.M. Li, Mater. Sci. Eng. A A322, 23 (2002).

    CAS  Google Scholar 

  18. S.N.G. Chu and J.C.M. Li, J. Mater. Sci. 12, 2200 (1977).

    Article  CAS  Google Scholar 

  19. F. Yang, J.C.M. Li, and C.W. Shih, Mater. Sci. Eng. A A201, 50 (1995).

    CAS  Google Scholar 

  20. D. Dorner, K. Roller, B. Skotzki, B. Stockhert, and G. Eggeler, Mater. Sci. Eng. A A357, 346 (2003).

    CAS  Google Scholar 

  21. D. Pan, R.A. Marks, I. Dutta, and S.G. Jadhav, Rev. Scientific Instrum., 75, 5244 (2004).

    Article  CAS  Google Scholar 

  22. I. Dutta, D. Pan, R.A. Marks, and S.G. Jadhav, Mater. Sci. Eng. A, in press.

  23. H. Nose, M. Sakane, Y. Tsukada, and H. Nishimura, J. Electron. Packaging 125, 59 (2003).

    Article  CAS  Google Scholar 

  24. E.C. Yu and J.C.M. Li, Phil. Mag. 36, 811 (1977).

    CAS  Google Scholar 

  25. S.N.G. Chu and J.C.M. Li, Mater. Sci. Eng. 39, 1 (1979).

    Article  CAS  Google Scholar 

  26. H.Y. Yu, M.A. Imam, and B.B. Rath, J. Mater. Sci. 20, 636 (1985).

    Article  Google Scholar 

  27. P. Tashadi, A. Juhasz, N. Chinh, and I. Kovacs, Res. Mech. 24, 334 (1988).

    Google Scholar 

  28. W.T. Han and M. Tomozawa, J. Am. Ceram. Soc., 73, 3626 (1990).

    Article  CAS  Google Scholar 

  29. Geza Cseh (Ph.D. dissertation, Eotvos Lovand University, 2003).

  30. J.B. Posthill, D.R. Frear, and J.W. Morris, Jr., Proc. 44th, Am. EMSA Meeting 44, 410 (1986).

    Google Scholar 

  31. D.R. Frear, J.B. Posthill, and J.W. Morris, Jr., Metall. Trans. A 20A, 1325 (1989).

    CAS  Google Scholar 

  32. D. Gupta and K.K. Kim, J. Appl. Phys., 51, 2066 (1980).

    Article  CAS  Google Scholar 

  33. J. Oberschmidt, K.K. Kim, and D. Gupta, J. Appl. Phys. 53, 5672 (1982).

    Article  CAS  Google Scholar 

  34. H.J. Frost and M.F. Ashby, Deformation Mechanism Maps—The Plasticity and Creep of Metals and Ceramics (Oxford, United Kingdom: Pergamon Press, 1982), p. 21.

    Google Scholar 

  35. Smithells Metals Reference Book, 7th ed., ed. E.A. Brandes and G.B. Brook, (Butterworth-Heinemann, Oxford 1992), pp. 13–24.

    Google Scholar 

  36. D.L. Decker, J.D. Weiss, and H.B. Vanfleet, Phys. Rev. B16, 2392 (1977).

    Google Scholar 

  37. K.L. Murty and L. Turlik, Adv. Electron. Packaging, ASME EEP-Vol.1-1, 309 (1992).

    Google Scholar 

  38. P. Yavari and T.G. Langdon, Acta Metall. 30, 2181 (1982).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pan, D., Dutta, I., Jadhav, S.G. et al. Impression creep characterization of 90Pb-10Sn microelectronic solder balls at subsolvus and supersolvus temperatures. J. Electron. Mater. 34, 1040–1046 (2005). https://doi.org/10.1007/s11664-005-0093-6

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-005-0093-6

Key words

Navigation