Skip to main content
Log in

Effect of temperature on elastic properties of woven-glass epoxy composites for printed circuit board applications

  • Regular Issue Paper
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The effect of temperature on the elastic properties of woven-glass epoxy substrates for printed circuit board applications was investigated. Three common commercially pressed boards (1080, 2116, and 7628 woven-glass fabrics and FR4 epoxy) were used for this study. The elastic properties were identified by means of a combined theoretical and experimental vibration method. Vibration experiments were performed under reduced air pressure to reduce the influence of mass, stiffness, and damping of the surrounding air and inside an environmental chamber with varying temperature and constant humidity. Above the glass-transition temperature (Tg) of the epoxy, the in-plane shear moduli (G12) were decreased by 33–37% and the out-of-plane shear moduli (G13, G23) were decreased by 48%, whereas the Young’s moduli in the warp (E1) and fill (E2) directions were much less affected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.-M. Tong, Mater. Chem. Phys. 40, 147 (1995).

    Article  CAS  Google Scholar 

  2. N.R. Sottos, J.M. Ockers, and M. Swindeman, J. Electron. Packaging 121, 37 (1999).

    CAS  Google Scholar 

  3. P. Shrotriya and N.R. Sottos, Polymer Compos. 19, 567 (1998).

    Article  CAS  Google Scholar 

  4. J. Yuan and L.A. Falanga, J. Reinf. Plastic Compos. 12, 489 (1993).

    Article  Google Scholar 

  5. P. Shrotriya, N.R. Sottos, and A.F. Skipor, J. Compos. Mater. 35, 905 (2001).

    Article  CAS  Google Scholar 

  6. T.M. Wang, I.M. Daniel, and J.T. Gotro, J. Compos. Mater. 26, 883 (1992).

    Article  CAS  Google Scholar 

  7. T.Y. Wu, Y. Guo, and W. Chen, IBM J. Res. Dev. 37, 621 (1993).

    Article  CAS  Google Scholar 

  8. J.H. Lau, Chip on Board Technologies for Multichip Modules (New York: VNR, 1994).

    Google Scholar 

  9. G.R. Blackwell, ed., The Electronic Packaging Handbook (Boca Raton, FL: CRC Press, 2000).

    Google Scholar 

  10. H.J. Licari, Multichip Module Design, Fabrication and Testing (New York: McGraw-Hill, 1995).

    Google Scholar 

  11. H.S. Morgan, J. Electron. Packaging 113, 350 (1991).

    Google Scholar 

  12. I.M. Daniel, T.-M. Wang, and J.T. Gotro, J. Electron. Packaging 112, 11 (1990).

    Google Scholar 

  13. D. Karalekas, I.M. Daniel, and J.T. Gotro, ANTEC 87, Proc. 45th Annual Conf., Soc. Plastics Engineers 339 (Brookfield Center, CT: SPE, 1987).

    Google Scholar 

  14. T. Lee, J. Lee, and I. Jung, Microelectr. Reliab. 38, 1941 (1998).

    Article  Google Scholar 

  15. S. Zhang, J. De Baets, and A. Van Calster, Microelectr. Reliab. 39, 1337 (1999).

    Article  Google Scholar 

  16. J.H. Lau, Thermal Stress and Strain in Microelectronics (New York: VNR, 1993).

    Google Scholar 

  17. A.D. Kraus, Thermal Analysis and Control of Electronic Equipment (New York: Hemisphere Publishing Corp., 1983).

    Google Scholar 

  18. S.-W. Lee and J.H. Lau, Circuit World 23, 11 (1997).

    Article  Google Scholar 

  19. J.H. Lau and Y.H. Pao, Solder Joint Reliability of BGA, CSP, Flip Chip, and Fine Pitch SMT Assemblies (New York: McGraw-Hill, 1997).

    Google Scholar 

  20. N.K. Naik and V.K. Ganesh, J. Mater. Sci. 32, 267 (1997).

    Article  CAS  Google Scholar 

  21. C.-Y. Fu and C. Ume, JOM 47, 31 (1995).

    Google Scholar 

  22. T. Ishikawa and T.-W. Chou, J. Mater. Sci. 17, 3211 (1982).

    Article  Google Scholar 

  23. N.K. Naik and P.S. Shembekar, J. Compos. Mater. 26, 2196 (1992).

    Article  Google Scholar 

  24. P.S. Shembekar and N.K. Naik, J. Compos. Technol. Res. 15, 23 (1992).

    Google Scholar 

  25. ASTM Standard D3039/D3039M-95a (West Conshohocken, PA: ASTM, 1995).

  26. ASTM Standard D3518/D3518M-94 (West Conshohocken, PA: ASTM, 1994).

  27. D.J. Ewins, Modal Testing: Theory and Practice (Hertfordshire, England: Research Studies Press Ltd., 1986).

    Google Scholar 

  28. P.S. Frederiksen, Mech. Mater. 13, 79 (1992).

    Article  Google Scholar 

  29. P. Pedersen and P.S. Frederiksen, Measurement 10, 113 (1992).

    Article  Google Scholar 

  30. J. Kuttenkeuler, J. Compos. Mater. 33, 695 (1999).

    Google Scholar 

  31. D. Larsson, J. Eng. Mech., Am. Soc. Civ. Eng. 123, 222 (1997).

    Google Scholar 

  32. F.J. Fahy, Inter-Noise 86, 16 (1986).

    Google Scholar 

  33. E. Reissner, J. Appl. Mech. 12, 69 (1945).

    Google Scholar 

  34. L. Cremer and M. Heckl, Structure-Borne Sound (New York: Springer-Verlag, 1972).

    Google Scholar 

  35. M.C. Junger and D. Feit, Sound, Structures and Their Interaction (Cambridge, MA: MIT Press, 1972).

    Google Scholar 

  36. P.S. Frederiksen, J. Sound Vibration 186, 743 (1995).

    Article  Google Scholar 

  37. W.K. Belvin and H.H. Edighoffer, J. Spacecr. Rochets 24, 270 (1987).

    Article  Google Scholar 

  38. J.A. Chionchio and C. Voorhees, Sound Vibration 27, 12 (1993).

    Google Scholar 

  39. J.L. Grenestedt, Optimization Software OPTRIX (Bethlehem, PA, 1992).

  40. S.S. Rao, Optimization: Theory and Applications (New York: Halsted Press, 1984).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hutapea, P., Grenestedt, J.L. Effect of temperature on elastic properties of woven-glass epoxy composites for printed circuit board applications. J. Electron. Mater. 32, 221–227 (2003). https://doi.org/10.1007/s11664-003-0213-0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-003-0213-0

Key words

Navigation