Skip to main content
Log in

Model development of GaN MOVPE growth chemistry for reactor design

  • Special Issue Paper
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The metalorganic vapor phase epitaxy of GaN is complicated by the extensive and pervasive complex gas phase chemistry within the growth system. This gas phase chemistry leads to the high sensitivity of the material properties on the detailed fluid dynamics within the system. Computational fluid dynamics (CFD) based reactor modeling combined with gas phase kinetics studies was used to determine the transport and reaction behavior within a high performance vertical MOVPE reactor. The complexity of the growth chemistry model was increased in a step-wise fashion. At each step, the concentration profiles were determined using available recent kinetic data. The high gas flow rate typically employed in GaN MOVPE results in a very thin high-temperature flow sheet above the growth front, leading to an extremely high thermal gradient. Within this thin high-temperature flow sheet, a stratified chemical structure is formed as a result of the unique thermal fluid environment. This stratified structure is closely related to the transport and reaction behavior within GaN MOVPE processes and forms part of the engineering guidelines for GaN MOVPE reactor design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, and Y. Sugimoto, Appl. Phys. Lett. 64, 1687 (1994).

    Article  CAS  Google Scholar 

  2. S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, and Y. Sugimoto, Appl. Phys. Lett. 68, 2105 (1996).

    Article  CAS  Google Scholar 

  3. M.J. Almond, C.E. Jenkins, D.A. Rice, and K. Hagen, J. Organomet. Chem. 439, 251 (1992).

    Article  CAS  Google Scholar 

  4. C.P. Kuo, J.S. Yuan, R.M. Cohen, J. Dunn, and G.B. Stringfellow, Appl. Phys. Lett. 44, 550 (1984).

    Article  CAS  Google Scholar 

  5. T.G. Mihopoulos, V. Gupta, and K.F. Jensen. J. Cryst. Growth 195, 733 (1998).

    Article  CAS  Google Scholar 

  6. R.D. Dupuis, J. Cryst. Growth 178, 56 (1997).

    Article  CAS  Google Scholar 

  7. H. Jurgensen, D. Schmitz, G. Strauch, E. Woelk, M. Dauelsberg, L. Kadinski, and Y.N. Markarov, MRS Internet J. Nitride Semiconductor Res. 1, 26 (1996).

    Google Scholar 

  8. S.A. Safvi, J.M. Redwing, M.A. Tisher, and T.F. Kuech, J. Electrochem. Soc. 144, 1789 (1997).

    Article  CAS  Google Scholar 

  9. T.G. Mihopoulos, Ph.D. Thesis, Chemical Engineering Department, Massachusetts Institute of Technology (1999).

  10. S.C. Binari, J.M. Redwing, G. Kelner, and W. Kruppa, Electron. Lett. 33, 242 (1997); D. Stocker, E.F. Schubert, K.S. Boutros, J.S. Flynn, and J.M. Redwing, Electron. Lett. 34, 373 (1998).

    Article  CAS  Google Scholar 

  11. cfdace Software Theory Manual, CFDRC, Huntsville, Alabama (1998).

  12. R.B. Bird, W.E. Stewart, and E. N. Lightfoot, Transport Phenomenon (New York: Wiley, 1960).

    Google Scholar 

  13. H. Simka, B.G. Willis, I. Lengyel, and K.F. Jensen, Progress in Crystal Growth and Characterization (in press).

  14. G.E. Coates, J. Chem. Soc. 2003 (1951).

  15. B.S. Sywe, J.R. Schlup, and J.H. Edgar, Chem. Mat. 3, 737 (1991).

    Article  CAS  Google Scholar 

  16. A. Thon and T.F. Kuech, Appl. Phys. Lett. 69, 55 (1996).

    Article  CAS  Google Scholar 

  17. M.J. Almond, M.G.B. Drew, C.E. Jenkins, and D.A. Rice, J. Chem. Soc. Dalton Trans. 5 (1992).

  18. A.C. Jones, C.R. Whitehouse, and J.S. Roberts, Chem. Vap. Deposition 1, 65 (1995).

    Article  CAS  Google Scholar 

  19. K.F. Jensen, Handbook of Crystal Growth, ed. D. Hurle (Amsterdam, The Netherlands: Elsevier, 1994).

    Google Scholar 

  20. Jingxi Sun, J.M. Redwing, and T.F. Kuech, Mat. Res. Soc. Proc., 572 (Warrendale, PA: MRS, 1999).

    Google Scholar 

  21. Y.E. Egorov, Yu.N. Makarov, R.A. Talalaev, G. Strauch, B. Wachtendorf, M. Heuken, and H. Jurgensen, Paper presented at the 10th Int.1 Conf. Vapor Growth and Epitaxy (Jerusalem, Israel, 26–31 July 1998).

  22. C.H. Chen, H. Liu, D. Steigerwald, W. Imler, C.P. Kuo, and M.G. Craford, Mat. Res. Soc. Proc., 395 (Warrendale, PA: MRS, 1996), p. 103.

    Google Scholar 

  23. C.H. Chen, H. Liu, D. Steigerwald, W. Imler, C.P. Kuo, and M.G. Craford, J. Electron. Mater. 25, 1004 (1996).

    CAS  Google Scholar 

  24. O. Briot, S. Clur, and R.L. Aulombard, Appl. Phys. Lett. 71, 1990 (1997).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, J., Redwing, J.M. & Kuech, T.F. Model development of GaN MOVPE growth chemistry for reactor design. J. Electron. Mater. 29, 2–9 (2000). https://doi.org/10.1007/s11664-000-0085-5

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-000-0085-5

Key words

Navigation