Skip to main content
Log in

Physicochemical and structural factors in the sulfuric acid leaching of nickel- and copper-bearing synthetic birnessites

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

A large number of nickel- and copper-doped samples of birnessite (0.7 nm phase), a layered-structure manganese mineral, were synthesized by dehydration of respective buserites (1 nm phase). The samples were characterized in terms of chemical composition, specific surface area, phase constituents, crystallinity, strain, morphological features, and structural complexity, in order to study the influence of the physicochemical characteristics of the samples on the leachability of doped elements and manganese in sulfuric acid. In contrast to manganese, the leaching behavior of doped nickel and copper is found to be more sensitive to the structural characteristics of the host birnessite phase. The leachability of the doped elements does not show any correlation with the specific surface area of the samples. Significant parameters affecting leachability are the interlayer spacing of the parent buserite phase used in the synthesis and the microcrystalline dimension and strain in the 〈001〉 crystallographic direction of the birnessite phase. In addition, leachability is also controlled by the crystal field stabilization energy (CFSE) of the doped metal ion. X-ray diffraction (XRD) and transmission electron microscopy (TEM) studies on leach residues indicated the transformation of birnessite phase into other minerals such as nsutite (γ-MnO2). A significant fraction of the doped nickel and copper (20 to 40 pct) remains unleached, even after prolonged leaching up to 6 days, and this is attributed to the compact structure of the newly formed phases during leaching.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.L. Mero: in Marine Manganese Deposits, G.P. Glasby, ed., Elsevier, Amsterdam, 1977, pp. 325–55.

    Google Scholar 

  2. D.W. Fuerstenau and K.N. Han: Min. Process. Technol. Rev., 1983, vol. 1, pp. 1–83.

    CAS  Google Scholar 

  3. B.W. Haynes, S.L. Law, and R. Maeda: Information Circular 8924, United States Bureau of Mines, Washington, D.C., 1983, pp. 1–11.

  4. Rakesh Kumar, R.K. Ray, and A.K. Biswas: in Productivity and Technology in Metallurgical Industries, M. Koch and J.C. Taylor, eds., TMS-AIME, Warrendale, PA, 1989, pp. 561–86.

    Google Scholar 

  5. Rakesh Kumar, R.K. Ray, and A.K. Biswas: Hydrometallurgy, 1990, vol. 25, pp. 61–83.

    Article  CAS  Google Scholar 

  6. Rakesh Kumar, S. Das, R.K. Ray, and A.K. Biswas: Hydrometallurgy, 1993, vol. 32, pp. 39–59.

    Article  CAS  Google Scholar 

  7. Rakesh Kumar: Mater. Trans. Jpn. Inst. Met., 1994, vol. 35 (1), pp. 27–34.

    CAS  Google Scholar 

  8. R.G. Burns and D.W. Fuerstenau: Am. Mineral., 1966, vol. 51, pp. 895–903.

    CAS  Google Scholar 

  9. A.C. Stiff, Q. Fernando, and H. Zeitlin: Mar. Min., 1982, vol. 3 (3–4), pp. 271–84.

    CAS  Google Scholar 

  10. B.W. Haynes, S.L. Law, and D.C. Barron: Mar. Min., 1986, vol. 5 (3), pp. 239–84.

    CAS  Google Scholar 

  11. Rakesh Kumar, R.K. Ray, and A.K. Biswas: Trans. Ind. Inst. Met., 1992, vol. 45 (5), pp. 287–301.

    CAS  Google Scholar 

  12. Rakesh Kumar, S.K. Das, R.K. Ray, and A.K. Biswas: Trans. Ind. Inst. Met., 1994, vol. 47 (5), pp. 273–85.

    CAS  Google Scholar 

  13. B.W. Haynes, S.L. Law, D.C. Barron, G.W. Kramer, R. Maeder, and M.J. Magyar: Information Circular 8906, United States Bureau of Mines, Washington, D.C. 1983, pp. 1–60.

  14. Rakesh Kumar, S. Das, R.K. Ray, and A.K. Biswas: Trans. Ind. Inst. Met., 1991, vol. 44 (2), pp. 119–30.

    CAS  Google Scholar 

  15. S. Turner and P. Buseck: Science, 1981, vol. 212, pp. 1024–27.

    Article  CAS  Google Scholar 

  16. R. Giovanoli: Mineral. Deposita (Berlin), 1980, vol. 15, pp. 251–53.

    CAS  Google Scholar 

  17. A.D. Wadsley: J. Am. Chem. Soc., 1950, vol. 72, pp. 1781–84.

    Article  CAS  Google Scholar 

  18. W. Buser and P. Graf: Helv. Chim. Acta, 1955, vol. 38 (3), pp. 810–29.

    Article  CAS  Google Scholar 

  19. D.J. Murray, T.W. Healy, and D.W. Fuerstenau: Adv. Chem. Ser., 1968, vol. 78, pp. 74–81.

    Article  Google Scholar 

  20. P. Loganathan and R.G. Barau: Geochim. Cosmochim. Acta, 1973, vol. 37, pp. 1277–93.

    Article  CAS  Google Scholar 

  21. R. Giovanoli, P. Burki, M. Giufferdi, and W. Stumm: Chimia, 1975, vol. 29 (12), pp. 517–20.

    CAS  Google Scholar 

  22. D.S. Jeffries and W. Stumm: Can. Mineral., 1976, vol. 14, pp. 16–22.

    Google Scholar 

  23. I.M. Varentsov, N.Y. Bakov, Y.P. Dikov, T.S. Gendler, and R. Giovanoli: Acta Mineral. Petrog. Szeged., 1979, vol. 24 (1), pp. 63–90.

    CAS  Google Scholar 

  24. J.W. Murray and J.G. Dilard: Geochim. Cosmochim. Acta, 1979, vol. 43, pp. 781–87.

    Article  CAS  Google Scholar 

  25. R.M. McKenzie: Aust. J. Soil Res., 1980, vol. 18, pp. 61–73.

    Article  CAS  Google Scholar 

  26. R. Giovanoli: in Geology and Geochemistry of Manganese, I.M. Varentsov and G. Grasselly, eds., Akademiai Kiado, Budapest, 1980, vol. 1, pp. 159–202.

    Google Scholar 

  27. D.L. Crowther, J.G. Dilard, and J.W. Murray: Geochim. Cosmochim. Acta, 1983, vol. 47, pp. 1399–1403.

    Article  CAS  Google Scholar 

  28. D.C. Golden, J.B. Dixon, and C.C. Chen: Clays Clay Miner., 1986, vol. 34 (5), pp. 511–20.

    Article  CAS  Google Scholar 

  29. P. Stouff and J. Boulegue: Am. Mineral., 1988, vol. 73, pp. 1162–69.

    CAS  Google Scholar 

  30. A. Manceau: Am. Mineral., 1989, vol. 74, pp. 1386–89.

    CAS  Google Scholar 

  31. A. Manceau, J.M. Combes, and G. Calas: J. Chim. Phys., 1989, vol. 86 (78), pp. 1533–45.

    CAS  Google Scholar 

  32. P. Ruetschi and R. Giovanoli: J. Appl. Electrochem., 1982, vol. 12, pp. 109–14.

    Article  CAS  Google Scholar 

  33. B. Terry: Hydrometallurgy, 1983, vol. 11, pp. 315–44.

    Article  CAS  Google Scholar 

  34. K.N. Han and X. Meng: in Extractive Metallurgy of Copper, Nickel and Cobalt, vol. I, Fundamental Aspects, R.G. Reddy and R.N. Weizenbach, eds., TMS, Warrendale, PA, 1993, pp. 709–33.

    Google Scholar 

  35. D.W. Fuerstenau, A.P. Herring, and M. Hoover: Trans. AIME, 1973, vol. 254, pp. 205–11.

    CAS  Google Scholar 

  36. K.N. Han and D.W. Fuerstenau: Trans. Inst. Min. Met. (London), 1975, vol. 84, pp. C105-C110.

    CAS  Google Scholar 

  37. H. Itoh, A. Okuwaki, and T. Okabe: Proc. 12th Annual Offshore Technology Conf., Houston, TX, May 5–8, 1980, Offshore Technology Conference, Houston, TX, 1980, pp. 359–64.

    Google Scholar 

  38. S.E. Khalafalla and J.E. Pahlman: Report of Investigation RI8518, United States Bureau of Mines, Washington, D.C., 1981, pp. 1–26.

  39. R. Giovanoli, E. Stahli, and W. Feitknecht: Helv. Chim. Acta, 1970, vol. 53 (2), pp. 209–20.

    Article  CAS  Google Scholar 

  40. K. Kodama: Methods of Quantitative Inorganic Analysis, An Encyclopedia of Gravimetric, Titrimetric and Colorimetric Methods, Interscience, New York, NY, 1963.

    Google Scholar 

  41. J.M. Chilton: Anal. Chem., 1953, vol. 25 (4), p. 1274–75.

    Article  CAS  Google Scholar 

  42. A. Classan and L. Bastings: Z. Anal. Chem., 1956, vol. 153, pp. 30–38.

    Article  Google Scholar 

  43. J.W. Murray, L.S. Balistrieri, and B. Paul: Geochim. Cosmochim. Acta, 1984, vol. 48, pp. 1237–47.

    Article  CAS  Google Scholar 

  44. C.A. Bower and J.O. Goertzen: Soil Sci., 1959, vol. 87, pp. 288–92.

    Article  Google Scholar 

  45. D.L. Carter, M.D. Heilman, and C.L. Gonzalez: Soil Sci., 1965, vol. 100 (5), pp. 356–60.

    Article  CAS  Google Scholar 

  46. H.P. Klug and L.E. Alexander: X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials, 2nd ed., John Wiley & Sons, New York, NY, 1974, pp. 618–708.

    Google Scholar 

  47. A. Taylor: X-ray Metallography, John Wiley & Sons, New York, NY, 1961, pp. 784–89.

    Google Scholar 

  48. F.W. Lang, D.E. Laughlin, and S.C. Chang: Mater. Sci. Eng., 1981, vol. 51, pp. 47–53.

    Article  Google Scholar 

  49. JCPDS X-ray Powder Diffraction File—Na-Birnessite (JCPDS:23-1046) and Na-Free Birnessite (JCPDS: 23-1239), International Centre for Diffraction Data, Swarthmore, PA, JCPDS: 1990.

  50. J.C. Davis: Statistics and Data Analysis in Geology, John Wiley & Sons, New York, NY, 1973, pp. 412–27.

    Google Scholar 

  51. JCPDS X-ray Powder Diffraction File—Nsutite (17-510) and Pyrolusite (24-735), International Centre for Diffraction Data, Swarthmore, PA, 1990.

  52. E. Paterson: Am. Mineral., 1981, vol. 66, pp. 424–27.

    CAS  Google Scholar 

  53. E. Paterson, J.L. Bunch, and D.R. Clark: Clay Miner., 1986, vol. 21, pp. 949–55.

    Article  CAS  Google Scholar 

  54. E.A. Perseil and R. Giovanoli: Bull. Mus. Natn. Hist. Nat., Paris, 4e Series, 1983, vol. 5 (2), sect. C, pp. 163–90.

    Google Scholar 

  55. S. Turner and P.R. Buseck: Nature, 1983, vol. 304 (5922), pp. 143–46.

    Article  CAS  Google Scholar 

  56. W.H. Casey, J.F. Banfield, H.R. Westrich, and L. McLaughlin: Chem. Geol., 1993, vol. 105, pp. 1–15.

    Article  CAS  Google Scholar 

  57. W. Buser: Helv. Chim. Acta, 1954, vol. 37 (7), pp. 2334–44.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, R., Das, S. Physicochemical and structural factors in the sulfuric acid leaching of nickel- and copper-bearing synthetic birnessites. Metall Mater Trans B 29, 527–540 (1998). https://doi.org/10.1007/s11663-998-0087-x

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-998-0087-x

Keywords

Navigation