Skip to main content
Log in

Displacement and Migration Behavior of Al3+ in Ca2Fe2−xAlxO5 Solid Solution During Reduction Process

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Ca2Fe2−xAlxO5 solid solution is an intermediate product for reduction of complex calcium ferrites, which is a restrictive step for efficient metallurgy of high-aluminum iron ore for ironmaking. In this work, three Ca2Fe2−xAlxO5 (x = 0.00, 0.21, 0.41) solid solutions were synthesized to investigate the reduction mechanism of Ca2Fe2−xAlxO5 solid solution. Combined with the Rietveld refinement method, it was confirmed Ca2Fe2−xAlxO5 is a substitutional solid solution, where the Al3+ could replace the position of Fe3+ to lower the cell size with orthorhombic crystal. The reduction result of Ca2Fe2−xAlxO5 shows that the solid solution of Al3+ in Ca2Fe2−xAlxO5 increased the structure stability, in which the reduction-beginning temperature increased from 820 °C to 1020 °C when x increased to 0.41, which was also verified by first principle calculation. It was found the reduction products of Ca2Fe2−xAlxO5 were iron, CaO, and Ca3Al2O6, where the CaO belongs to a solid solution with the lower melting-temperature, resulting in decrease of the reduction rate at the higher temperature. Furthermore, it was revealed that the Al3+ has been gradually dissolved into Ca2Fe2−xAlxO5 remained with the reduction in progress at the earlier stage, but the Al3+ separates from Ca2Fe2−xAlxO5 and reacts with CaO to generate Ca3Al2O6 at the later stage of reduction due to the Al3+ amount exceeding the solid solution limit (= 0.63 at 1050 °C).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. L. Lu, O. Ishiyama, T. Higuchi, M. Matsumura, and Higuchi, K: Iron ore sintering, In Iron Ore Woodhead Publishing, 2022, pp. 489–538

  2. N.A. Webster, M.I. Pownceby, R. Fan, and H.E. Brand: ISIJ Int., 2022, vol. 62, pp. 652–57. https://doi.org/10.2355/isijinternational.ISIJINT-2021-502

    Article  CAS  Google Scholar 

  3. H. Han, L. Lu, and S. Hapugoda: Miner. Eng., 2023, vol. 197, 108062https://doi.org/10.1016/j.mineng.2023.108062

    Article  CAS  Google Scholar 

  4. L. Tomas da Rocha, S. Cho, S.W. Kim, and S.M. Jung: Metall. Mater. Trans. B, 2022, vol. 53, pp. 3306–21. https://doi.org/10.1007/s11663-022-02612-4

    Article  CAS  Google Scholar 

  5. L. Niu, Z. Liu, J. Zhang, D. Lan, S. Li, Z. Li, and Y. Wang: Int. J Min. Met. Mater., 2023, vol. 30, pp. 303–13. https://doi.org/10.1007/s12613-022-2484-6

    Article  CAS  Google Scholar 

  6. M. Hayashi, D. Zhou, Y. Iwami, T. Higuchi, T. Watanabe, R. Endo, and M. Susa: ISIJ Int., 2022, vol. 62, pp. 1785–91. https://doi.org/10.2355/isijinternational.ISIJINT-2022-107

    Article  CAS  Google Scholar 

  7. T.J. Park, J.S. Choi, and D.J. Min: Steel Res. Int., 2019, vol. 90, p. 1900001. https://doi.org/10.1002/srin.201900001

    Article  CAS  Google Scholar 

  8. Y. Takeichi, R. Murao, and M. Kimura: ISIJ Int., 2023, vol. 63, pp. 2017–22. https://doi.org/10.2355/isijinternational.ISIJINT-2023-215

    Article  CAS  Google Scholar 

  9. X. Chen, W. Wang, D. Yang, H. Zheng, and B. Wang: ISIJ Int., 2023, vol. 63, pp. 261–70. https://doi.org/10.2355/isijinternational.ISIJINT-2022-348

    Article  CAS  Google Scholar 

  10. S. Cho, S.W. Kim, and S.M. Jung: ISIJ Int., 2022, vol. 62, pp. 2587–98. https://doi.org/10.2355/isijinternational.ISIJINT-2022-127

    Article  Google Scholar 

  11. Y.B. Chen, Y. Du, Y.F. Guo, and X.M. Guo: Minerals, 2022, vol. 12, pp. 282–94. https://doi.org/10.3390/min12030282

    Article  CAS  Google Scholar 

  12. S.H. Lu, J. Pan, S.W. Li, D.Q. Zhu, Z.Q. Guo, Y. Shi, and B.J. Shi: J. Iron. Steel Res. Int., 2023, vol. 30, pp. 635–49. https://doi.org/10.1007/s42243-022-00860-x

    Article  CAS  Google Scholar 

  13. X. Jiang, J. Zhao, L. Wang, H. An, Q. Gao, H. Zheng, and F. Shen: ISIJ Int., 2021, vol. 61, pp. 86–92. https://doi.org/10.2355/isijinternational.ISIJINT-2020-243

    Article  CAS  Google Scholar 

  14. N.A. Webster, M.I. Pownceby, I.C. Madsen, and J.A. Kimpton: Metall. Mater. Trans. B, 2012, vol. 43, pp. 1344–57. https://doi.org/10.1007/s11663-012-9740-5

    Article  CAS  Google Scholar 

  15. J. Park, E. Kim, I.K. Suh, and J. Lee: Minerals, 2021, vol. 12, pp. 35–49. https://doi.org/10.3390/min12010035

    Article  CAS  Google Scholar 

  16. H. Guo and X.M. Guo: Metall. Mater. Trans. B, 2018, vol. 49, pp. 1974–84. https://doi.org/10.1007/s11663-018-1292-x

    Article  CAS  Google Scholar 

  17. S. Nicol, J. Chen, M.I. Pownceby, and N.A. Webster: ISIJ Int., 2018, vol. 58, pp. 2157–72. https://doi.org/10.2355/isijinternational.ISIJINT-2018-203

    Article  CAS  Google Scholar 

  18. N.A. Webster, D.P. Odea, B.G. Ellis, and M.I. Pownceby: ISIJ Int., 2017, vol. 57, pp. 41–47. https://doi.org/10.2355/isijinternational.ISIJINT-2016-332

    Article  CAS  Google Scholar 

  19. N.A. Webster, M.I. Pownceby, and I.C. Madsen: ISIJ Int., 2013, vol. 53, pp. 1334–40. https://doi.org/10.2355/isijinternational.53.1334

    Article  CAS  Google Scholar 

  20. B. Cai, T. Watanabe, C. Kamijo, M. Susa, and M. Hayashi: ISIJ Int., 2018, vol. 58, pp. 642–51. https://doi.org/10.2355/isijinternational.ISIJINT-2017-552

    Article  CAS  Google Scholar 

  21. T. Harvey, M.I. Pownceby, J. Chen, N.A. Webster, T.B.T. Nguyen, L. Matthews, D. O’Dea, and T. Honeyands: JOM, 2021, vol. 73, pp. 345–55. https://doi.org/10.1007/s11837-020-04452-6

    Article  CAS  Google Scholar 

  22. R. Murao and M. Kimura: ISIJ Int., 2022, vol. 62, pp. 1159–67. https://doi.org/10.2355/isijinternational.ISIJINT-2021-559

    Article  CAS  Google Scholar 

  23. F. Liao and X.M. Guo: Mater. Res. Express, 2019, vol. 6, 106501https://doi.org/10.1088/2053-1591/ab3633

    Article  CAS  Google Scholar 

  24. T. Maeda and Y. Ono: Tetsu-to-Hagané, 1994, vol. 80, pp. 451–56. https://doi.org/10.2355/tetsutohagane1955.80.6_451

    Article  CAS  Google Scholar 

  25. T. Maeda and Y. Ono: Tetsu-to-Hagané, 1989, vol. 75, pp. 416–23. https://doi.org/10.2355/tetsutohagane1955.75.3_416

    Article  CAS  Google Scholar 

  26. C. Ding, X. Lv, G. Li, C. Bai, S. Xuan, K. Tang, and Y. Chen: ISIJ Int., 2017, vol. 57, pp. 1181–90. https://doi.org/10.2355/isijinternational.ISIJINT-2017-088

    Article  CAS  Google Scholar 

  27. J. Xiao, Y. Song, and Y. Li: Minerals, 2023, vol. 13, pp. 566–80. https://doi.org/10.3390/min13040566

    Article  CAS  Google Scholar 

  28. H. Krztoń and J. Stecko: In Iron Ores. 2021, IntechOpen

  29. T. Honeyands, J. Manuel, L. Matthews, D. Odea, D. Pinson, J. Leedham, and M.I. Pownceby: Minerals, 2019, vol. 9, pp. 333–49. https://doi.org/10.3390/min9060333

    Article  CAS  Google Scholar 

  30. N. Pailhé, A. Wattiaux, M. Gaudon, and A. Demourgues: J. Solid State Chem., 2008, vol. 181, pp. 1040–47. https://doi.org/10.1016/j.jssc.2008.02.009

    Article  CAS  Google Scholar 

  31. S. Ichikawa, D. Fujimura, A. Ohbuchi, and T. Nakamura: ISIJ Int., 2016, vol. 56, pp. 2228–35. https://doi.org/10.2355/isijinternational.ISIJINT-2016-392

    Article  CAS  Google Scholar 

  32. I.C. Madsen and N.V. Scarlett: R Soc Chem, 2008, vol. 5, pp. 298–331

    Google Scholar 

  33. V. Kahlenberg, H. Krüger, M. Tribus, and B. Anwander: Miner. Petrol., 2021, vol. 115, pp. 137–47. https://doi.org/10.1007/s00710-020-00730-y

    Article  CAS  Google Scholar 

  34. K. Momma and F. Izumi: J. Appl. Crystallogr., 2011, vol. 44, pp. 1272–76. https://doi.org/10.1107/S0021889811038970

    Article  CAS  Google Scholar 

  35. G.H. La, J.S. Choi, and D.J. Min: Metals, 2021, vol. 11, pp. 839–51. https://doi.org/10.3390/met11050839

    Article  CAS  Google Scholar 

  36. Y. Nakamura, N. Shibayama, A. Hori, T. Matsushita, H. Segawa, and T. Kondo: Inorg. Chem., 2020, vol. 59, pp. 6709–16

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the National Natural Science Foundation of China (U22A20175 and No. 52304317) for financial support of this research.

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xing-Min Guo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 230 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, Y., Guo, XM. Displacement and Migration Behavior of Al3+ in Ca2Fe2−xAlxO5 Solid Solution During Reduction Process. Metall Mater Trans B (2024). https://doi.org/10.1007/s11663-024-03120-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11663-024-03120-3

Navigation