Skip to main content
Log in

Thermal Transformation of Discarded CRT Printed Circuit Boards for Recovery of Sn Values

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

A printed circuit board (PCB) is an essential and central component of electronic waste and comprises majorly valuable metallic values (Sn, Pb, Cu). This study utilizes a short, fast-heating, low-temperature pyrolysis process to recover value-added tin-based alloy from spent cathode ray tube (CRT) PCB. The optimized process condition (550 °C, 10 minutes) resulted in ~ 62 wt pct solid, ~ 8.5 wt pct oil, and ~ 29.5 wt pct gas products. Sn recovery of ~ 75 pct in the Pb-Sn metallic droplet form with the purity of Sn + Pb ~ 85.2 pct at 550 °C within 10 minutes is obtained. Sn-based alloy does not form at 400 °C due to incomplete decomposition of the polymeric fraction and limited surface tension, as revealed by characterization. At higher temperatures (550 °C), the molten alloy spreads over the PCB Cu tracks due to enhanced wetting force, leading to diffusion of Sn in Cu and separation of Pb. The diffusion of Sn in Cu leads to the formation of intermetallics (Cu3Sn, Cu6Sn5) at higher residence times and temperatures, inhibiting the recovery of the alloy. Further, the quenching causes spinodal decomposition, leading to a zebra stripe pattern in the alloy, and XPS confirmed the absence of Br in the alloy. The organic functional group disappears from the residual solid char with temperature, as revealed by FT-IR. The gaseous product comprises CH4, CO, CH3OH, C2H6, C2H4, and CO2 with gross heating value of ~ 310 kJ/m3. The pyrolyzed oil comprised ~ 60 pct phenol and phenolic compounds and can be re-utilized for synthesizing phenolic resins and epoxy resin. ~ 0.19 kg of Sn-based alloy (~ 85.2 pct purity) can be recovered from 1 kg of PCB as a feedstock for the tin-making industry and soldering applications.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. K. Habib, E. Mohammadi, and S.V. Withanage: J. Hazard. Mater., 2023, vol. 448, pp. 130865–76.

    Article  CAS  PubMed  Google Scholar 

  2. C.P. Baldé, V. Forti, V. Gray, R. Kuehr, and P. Stegmann: International Telecommunication Union, and International Solid Waste Association, 2017.

  3. A. Işıldar, E.R. Rene, E.D. van Hullebusch, and P.N. Lens: Resour. Conserv. Recycl., 2018, vol. 135, pp. 296–312.

    Article  Google Scholar 

  4. B.H. Robinson: Sci. Total. Environ., 2009, vol. 408(2), pp. 183–91.

    Article  CAS  PubMed  Google Scholar 

  5. L.H. Xavier, M. Ottoni, and L.P.P. Abreu: Resour. Conserv. Recycl., 2023, vol. 190, pp. 106840–56.

    Article  Google Scholar 

  6. S. Mir and N. Dhawan: Resour. Conserv. Recycl., 2022, vol. 178, pp. 106027–48.

    Article  CAS  Google Scholar 

  7. J. Li, H. Duan, K. Yu, L. Liu, and S. Wang: Resour. Conserv. Recycl., 2010, vol. 54(11), pp. 810–15.

    Article  Google Scholar 

  8. S. Goswami, A. Kushwaha, L. Goswami, N. Singh, U. Bhan, A. Daverey, and C.M. Hussain: Environmental Management of Waste Electrical and Electronic Equipment, Elsevier, Amsterdam, 2021, pp. 163–84.

    Book  Google Scholar 

  9. W.A. Bizzo, R.A. Figueiredo, and V.F. De Andrade: Materials., 2014, vol. 7(6), pp. 4555–66.

    Article  PubMed  PubMed Central  Google Scholar 

  10. M. Arshadi, S. Yaghmaei, and S.M. Mousavi: Resour. Conserv. Recycl., 2018, vol. 139, pp. 298–306.

    Article  Google Scholar 

  11. R. Farzana, K. Hassan, W. Wang, and V. Sahajwalla: J. Environ. Manag., 2019, vol. 234, pp. 145–53.

    Article  Google Scholar 

  12. I.C.E. Ike-Eze, O.N. Ucheji, P.A. Ubi, E.O. Oji, V.S. Aigbodion, A.D. Omah, and C.C. Ogbuefi: J. Mater. Environ. Sci., 2023, vol. 14(4), pp. 410–20.

    CAS  Google Scholar 

  13. S.J. Zhong, L. Zhang, M.L. Li, W.M. Long, and F.J. Wang: Mater. Des., 2022, vol. 215, pp. 110439–98.

    Article  CAS  Google Scholar 

  14. R. Tian, C. Hang, Y. Tian, and J. Xu: J. Mater. Process. Technol., 2019, vol. 268, pp. 1–9.

    Article  CAS  Google Scholar 

  15. H.R. Kotadia, P.D. Howes, and S.H. Mannan: Microelectron. Reliab., 2014, vol. 54(6–7), pp. 1253–73.

    Article  CAS  Google Scholar 

  16. USGS: Mineral commodity summaries (2021), https://pubs.usgs.gov/periodicals/mcs2021/mcs2021.pdf. Accessed 25 July 2023.

  17. I. Rodliyah, R. Wijayanti, K.N. Hidayat, E.A. Dianawati, A. Sudrajat, and D. Firmansyah: IOP Conf. Ser., 2021, vol. 882, p. 012008.

    Article  Google Scholar 

  18. LME: London Metal Exchange (2023), https://www.lme.com. Accessed 9 October 2023.

  19. G. Zeng, S. McDonald, and K. Nogita: Microelectron. Reliab., 2012, vol. 52(7), pp. 1306–22.

    Article  CAS  Google Scholar 

  20. L. Meng, Z. Wang, Y. Zhong, L. Guo, J. Gao, K. Chen, H. Cheng, and Z. Guo: J. Chem. Eng., 2017, vol. 326, pp. 540–50.

    Article  CAS  Google Scholar 

  21. T. Yang, P. Zhu, W. Liu, L. Chen, and D. Zhang: J. Waste Manag., 2017, vol. 68, pp. 449–57.

    Article  CAS  Google Scholar 

  22. R. Rajarao, V. Sahajwalla, R. Cayumil, M. Park, and R. Khanna: Procedia Environ. Sci., 2014, vol. 21, pp. 33–41.

    Article  CAS  Google Scholar 

  23. C. Tang, X. Deng, Y. Chen, Y. Li, C. Deng, Q. Zhu, J. Liu, and S. Yang: Hydrometallurgy, 2021, vol. 205, pp. 105726–37.

    Article  CAS  Google Scholar 

  24. X. Wang, F. Jiao, W. Qin, Z. Li, N. Wang, W. Liu, and C. Yang: JOM, 2020, vol. 72, pp. 3179–85.

    Article  CAS  Google Scholar 

  25. M.K. Jha, A. Kumari, P.K. Choubey, J.C. Lee, V. Kumar, and J. Jeong: Hydrometallurgy, 2012, vol. 121, pp. 28–34.

    Article  Google Scholar 

  26. S.K. Kim, J.C. Lee, and K. Yoo: Hydrometallurgy, 2016, vol. 165, pp. 143–47.

    Article  CAS  Google Scholar 

  27. S.H. Lee, K. Yoo, M.K. Jha, and J.C. Lee: Hydrometallurgy, 2015, vol. 157, pp. 184–87.

    Article  CAS  Google Scholar 

  28. Y. Zhou, W. Wu, and K. Qiu: J. Waste Manag., 2010, vol. 30(11), pp. 2299–2304.

    Article  CAS  Google Scholar 

  29. I. De Marco, B.M. Caballero, M.J. Chomón, M.F. Laresgoiti, A. Torres, G. Fernández, and S. Arnaiz: J. Anal. Appl. Pyrolysis, 2008, vol. 82(2), pp. 179–83.

    Article  Google Scholar 

  30. A. Shokri, F. Pahlevani, I. Cole, and V. Sahajwalla: J. Environ. Manag., 2017, vol. 199, pp. 7–12.

    Article  CAS  Google Scholar 

  31. A. Shokri, F. Pahlevani, K. Levick, I. Cole, and V. Sahajwalla: J. Clean. Prod., 2017, vol. 142, pp. 2586–92.

    Article  CAS  Google Scholar 

  32. K. Ulman, S. Maroufi, S. Bhattacharyya, and V. Sahajwalla: J. Clean. Prod., 2018, vol. 198, pp. 1485–93.

    Article  CAS  Google Scholar 

  33. R. Hossain, R.K. Nekouei, I. Mansuri, and V. Sahajwalla: ACS Sustain. Chem. Eng., 2018, vol. 7(1), pp. 1006–17.

    Article  Google Scholar 

  34. D.M. Abdo, S.M. Abdelbasir, S.T. El-Sheltawy, and I.A. Ibrahim: Korean J. Chem. Eng., 2021, vol. 38(9), pp. 1934–45.

    Article  CAS  Google Scholar 

  35. S. Fogarasi, F. Imre-Lucaci, M. Fogarasi, and Á. Imre-Lucaci: J. Clean. Prod., 2019, vol. 213, pp. 872–83.

    Article  CAS  Google Scholar 

  36. P. Cerchier, M. Dabalà, and K. Brunelli: JOM, 2017, vol. 69, pp. 1583–88.

    Article  CAS  Google Scholar 

  37. X. Zhang, J. Guan, Y. Guo, X. Yan, H. Yuan, J. Xu, J. Guo, Y. Zhou, R. Su, and Z. Guo: ACS Sustain. Chem. Eng., 2015, vol. 20153(8), pp. 1696–1700.

    Article  Google Scholar 

  38. M.K. Jha, P.K. Choubey, A.K. Jha, A. Kumari, J.C. Lee, V. Kumar, and J. Jeong: J. Waste Manag., 2012, vol. 32(10), pp. 1919–25.

    Article  CAS  Google Scholar 

  39. R. Cayumil, R. Khanna, M. Ikram-Ul-Haq, R. Rajarao, A. Hill, and V. Sahajwalla: J. Waste Manag., 2014, vol. 34(10), pp. 1783–92.

    Article  CAS  Google Scholar 

  40. Y. Zhou, W. Wu, and K. Qiu: J. Waste Manag., 2011, vol. 31(12), pp. 2569–76.

    Article  CAS  Google Scholar 

  41. H. Ramon, J.R. Peeters, W. Sterkens, J.R. Duflou, K. Kellens, and W. Dewulf: Procedia CIRP., 2020, vol. 90, pp. 421–25.

    Article  Google Scholar 

  42. B. Choi, B. Domínguez, A. D’Souza, H. Khadse, A. Kunkel, S. Nagarajan, T. Necke, R. Peche, M. Revello, J. Rossa, and F. Sauer: Resour. Conserv. Recycl., 2023, vol. 198, p. 107201.

    Article  CAS  Google Scholar 

  43. Y. Shen, X. Chen, X. Ge, and M. Chen: J. Environ. Manag., 2018, vol. 214, pp. 94–103.

    Article  CAS  Google Scholar 

  44. A. Barnwal and N. Dhawan: J. Clean. Prod., 2020, vol. 256, pp. 120516–25.

    Article  CAS  Google Scholar 

  45. M. Furuuchi and K. Gotoh: Powder Technol., 1992, vol. 73(1), pp. 1–9.

    Article  CAS  Google Scholar 

  46. B. Liu, T.K. Lee, and K.C. Liu: J. Electron. Mater., 2011, vol. 40, pp. 2111–18.

    Article  CAS  Google Scholar 

  47. P.T. Vianco, J.A. Rejent, and A.C. Kilgo: in Brazing and Soldering: Proceedings of the 3rd International Brazing and Soldering Conference, 2006, p. 83.

  48. G. Grause, M. Furusawa, A. Okuwaki, and T. Yoshioka: Chemosphere, 2008, vol. 71(5), pp. 872–78.

    Article  CAS  PubMed  Google Scholar 

  49. P.R. Jadhao, E. Ahmad, K.K. Pant, and K.D.P. Nigam: J. Waste Manag., 2020, vol. 118, pp. 150–60.

    Article  CAS  Google Scholar 

  50. R. Saini, R. Khanna, R.K. Dutta, R. Cayumil, M. Ikram-Ul-Haq, V. Agarwala, G. Ellamparuthy, K. Jayasankar, P.S. Mukherjee, and V. Sahajwalla: J. Waste Manag., 2017, vol. 64, pp. 182–89.

    Article  CAS  Google Scholar 

  51. J. Wang, S. Xue, Z. Lv, L. Wang, H. Liu, and L. Wen: J. Mater. Sci. Mater. Electron., 2018, vol. 29, pp. 20726–33.

    Article  CAS  Google Scholar 

  52. N.S. Javid, R. Sayyadi, and F. Khodabakhshi: J. Mater. Sci. Mater. Electron., 2019, vol. 30, pp. 4737–52.

    Article  CAS  Google Scholar 

  53. K. Vidyatharran, M.A. Hanim, T.T. Dele-Afolabi, K.A. Matori, and O.S. Azlina: J. Mater. Res. Technol., 2021, vol. 15, pp. 2497–2506.

    Article  CAS  Google Scholar 

  54. K. Dušek, P. Veselý, D. Bušek, A. Petráč, A. Géczy, B. Illés, and O. Krammer: Materials, 2021, vol. 14(24), pp. 7909–22.

    Article  PubMed  PubMed Central  Google Scholar 

  55. S. Griffiths, A. Wedi, and G. Schmitz: Mater Charact, 2021, vol. 178, pp. 111304–15.

    Article  CAS  Google Scholar 

  56. R. Md Salim, J. Asik, and M.S. Sarjadi: Wood Sci. Technol., 2021, vol. 55, pp. 295–313.

    Article  CAS  Google Scholar 

  57. M. Haghighi-Yazdi and P. Lee-Sullivan: Mech. Time Depend. Mater., 2013, vol. 17, pp. 171–93.

    Article  CAS  Google Scholar 

  58. S. Karimi, J. Feizy, F. Mehrjo, and M. Farrokhnia: RSC Adv., 2016, vol. 6(27), pp. 23085–93.

    Article  CAS  Google Scholar 

  59. B.H. Stuart: Infrared Spectroscopy: Fundamentals and Applications, Wiley, Hoboken, 2004.

    Book  Google Scholar 

  60. G. Reena, S. Sangita, and K. Verinder: J. Chem. Pharm. Res., 2011, vol. 3(5), pp. 660–67.

    Google Scholar 

  61. Y. Liu and K.N. Tu: Mater. Today. Adv., 2020, vol. 8, pp. 100115–31.

    Article  Google Scholar 

  62. J. Sun, H. Liang, S. Sun, J. Hu, C. Teng, L. Zhao, and H. Bai: Metals, 2022, vol. 12(10), p. 1640.

    Article  CAS  Google Scholar 

  63. L.G. Bulusheva, E.V. Lobiak, Y.V. Fedoseeva, J.Y. Mevellec, A.A. Makarova, E. Flahaut, and A.V. Okotrub: Synth. Met., 2020, vol. 259, p. 116233.

    Article  CAS  Google Scholar 

  64. W. Xia, H. Wang, X. Zeng, J. Han, J. Zhu, M. Zhou, and S. Wu: CrystEngComm, 2014, vol. 16(30), pp. 6841–47.

    Article  CAS  Google Scholar 

  65. F. Barontini and V. Cozzani: J. Anal. Appl. Pyrolysis, 2006, vol. 77(1), pp. 41–55.

    Article  CAS  Google Scholar 

  66. A.A. Korolev, K.L. Timofeev, G.I. Maltsev, and S.A. Krayukhin: Russ. J. Non-Ferr. Met., 2022, vol. 63(1), pp. 7–14.

    Article  Google Scholar 

  67. A.I. Balabanovich, A. Hornung, D. Merz, and H. Seifert: Polym. Degrad. Stab., 2004, vol. 85(1), pp. 713–23.

    Article  CAS  Google Scholar 

  68. G. Sivalingam and G. Madras: Ind. Eng. Chem. Res., 2004, vol. 43(24), pp. 7716–22.

    Article  CAS  Google Scholar 

  69. M. Blazsó, Z. Czégény, and C. Csoma: J. Anal. Appl. Pyrolysis, 2002, vol. 64(2), pp. 249–61.

    Article  Google Scholar 

  70. G. Jie, L. Ying-Shun, and L. Mai-Xi: J. Anal. Appl. Pyrolysis, 2008, vol. 83(2), pp. 185–89.

    Article  Google Scholar 

  71. M. Altarawneh, A. Saeed, M. Al-Harahsheh, and B.Z. Dlugogorski: Prog. Energy Combust. Sci., 2019, vol. 70, pp. 212–59.

    Article  Google Scholar 

  72. P. Evangelopoulos, E. Kantarelis, and W. Yang: J. Anal. Appl. Pyrolysis, 2015, vol. 115, pp. 337–43.

    Article  CAS  Google Scholar 

  73. J. Scheirs and W. Kaminsky: Feedstock Recycling and Pyrolysis of Waste Plastics, Wiley, Chichester, 2006.

    Book  Google Scholar 

  74. C.H. Zhang, Y.P. Bai, L.X. Liu, Z.Q. Zhang, and Q.Y. Li: Adv. Compos. Lett., 2005, vol. 14(1), p. 096369350501400102.

  75. F.R. Xiu, Y. Li, Y. Qi, X. Yu, J. He, Y. Lu, X. Gao, Y. Deng, and Z. Song: J. Waste Manag., 2019, vol. 84, pp. 355–63.

    Article  CAS  Google Scholar 

  76. C. Ma and T. Kamo: J. Anal. Appl. Pyrolysis, 2018, vol. 134, pp. 614–20.

    Article  CAS  Google Scholar 

  77. B.M. Caballero, I. De Marco, A. Adrados, A. López-Urionabarrenechea, J. Solar, and N. Gastelu: J. Waste Manag., 2016, vol. 57, pp. 226–34.

    Article  CAS  Google Scholar 

  78. W.J. Hall and P.T. Williams: J. Anal. Appl. Pyrolysis, 2007, vol. 79(1–2), pp. 375–86.

    Article  CAS  Google Scholar 

  79. E. Sahle-Demessie, B. Mezgebe, J. Dietrich, Y. Shan, S. Harmon, and C.C. Lee: J. Environ. Chem. Eng., 2021, vol. 9(1), p. 104943.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a PMRF Grant (PM-31-22-625-414) by the Ministry of Education, Government of India. Thanks to Prateek Kulkarni for his help in writing the Python code for image analysis.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikhil Dhawan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 662 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gahlot, R., Dhawan, N. Thermal Transformation of Discarded CRT Printed Circuit Boards for Recovery of Sn Values. Metall Mater Trans B (2024). https://doi.org/10.1007/s11663-024-03103-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11663-024-03103-4

Navigation