Skip to main content
Log in

Effect of Carbon Loss Reaction Kinetics on Coke Degradation by Piecewise Analysis

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

During carbon loss reaction, different reaction gradients would be generated inside the porous structure of coke, which had an important impact on the degradation behavior of coke. The diffusion coefficient Deff of gas in coke pore will change with the random evolution of coke pore structure, which brings great difficulties to accurately analyze the concentration field or reaction gradient of carbon loss reaction by simulation method. To solve this problem, this work proposes to measure the relationship between coke pore structure and diffusion coefficient at different reaction stages by means of piecewise analysis. Furthermore, it is proposed that the size of the carbon loss reaction gradient in coke pores depends on the relative size of the chemical reaction rate and the mass transfer rate, and the parameter krea/Deff characterizing the gradient degradation properties of coke was given. Alkali metal catalysis has a significant kinetic effect on the carbon loss process of coke, that is, it can significantly increase the krea/Deff value of coke, resulting in a larger degradation gradient of coke in the blast furnace. This will make the particle size distribution of degraded coke more uneven, thus significantly reducing the permeability of the blast furnace. The process of coke degradation is similar to pencil sharpening, and the breaking strength and fines generation behavior of cokes depend on how sharp they are sharpened (degradation gradient). The degradation gradient is related to the instantaneous gradient which is determined by krea/Deff and speed of sharpening pencils. Thus, the piecewise analysis method used in this work could supply an effective reference for further constructing the mathematical relationship between coke microstructure and its degradation behavior in blast furnace.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. M.G. Dastidar, A. Bhattacharyya, B.K. Sarkar, R. Dey, M.K. Mitra, and J. Schenk: Fuels, 2020, vol. 268, p. 117388.

    Article  CAS  Google Scholar 

  2. R.S. Xu, X.M. Huang, W. Wang, S.L. Deng, M.M. Song, and F.F. Wang: Metall. Mater. Trans. B, 2020, vol. 51B, pp. 1526–39.

    Article  Google Scholar 

  3. G.W. Wang, S. Ren, J.L. Zhang, X.J. Ning, W. Liang, N. Zhang, and C. Wang: Chem. Eng. J., 2020, vol. 387, p. 124093.

    Article  CAS  Google Scholar 

  4. K. Zhu, Z.M. Chen, S.X. Ye, S.H. Ceng, and Y.W. Zhang: Int. J. Miner. Metall. Mater., 2022, vol. 29, pp. 1839–50.

    Article  CAS  Google Scholar 

  5. H. Cheng, Y.H. Liang, R. Guo, Z. Sun, and Q. Wang: Fuels, 2021, vol. 283, p. 118936.

    Article  CAS  Google Scholar 

  6. B. Ghosh, B.K. Sahoo, O.S. Niyogi, B. Chakraborty, K.K. Manjhi, and T.K. Das: J. Coal Prep. Util., 2018, vol. 38, pp. 321–36.

    Article  CAS  Google Scholar 

  7. Q. Wang, R. Guo, and X.F. Zhao: Fuels, 2016, vol. 182, pp. 879–85.

    Article  CAS  Google Scholar 

  8. X. Xing, H. Rogers, G.Q. Zhang, K. Hockings, P. Zulli, J. Mathieson, and O. Ostrovski: Fuel Process. Technol., 2017, vol. 157, pp. 42–57.

    Article  CAS  Google Scholar 

  9. Q. Niu, S.S. Cheng, W.X. Xu, W.J. Niu, and Y.G. Mei: ISIJ Int., 2019, vol. 59, pp. 1997–2004.

    Article  CAS  Google Scholar 

  10. H. Zhang: Chem. Eng. J., 2018, vol. 247, pp. 440–46.

    Article  Google Scholar 

  11. G.W. Wang, J.L. Zhang, W.W. Chang, R.P. Li, Y.J. Li, and C. Wang: Energy, 2018, vol. 147, pp. 25–35.

    Article  CAS  Google Scholar 

  12. W. Wang, J. Wang, R. Sheng, X. Yue, Y.Y. Jin, and Z.L. Xue: Fuel Process. Technol., 2017, vol. 159, pp. 118–27.

    Article  CAS  Google Scholar 

  13. S. Pusz, M. Krzesińska, Ł Smędowski, J. Majewska, B. Pilawa, and B. Kwiecińska: Int. J. Coal Geol., 2010, vol. 81, pp. 278–92.

    Article  Google Scholar 

  14. M.J. Liu, J. Bai, J.L. Yu, and Z.Q. Bai: Energy Fuels, 2020, vol. 34, pp. 4162–72.

    Article  CAS  Google Scholar 

  15. W. Wang, X.H. Chen, R.S. Xu, J. Li, W.J. Shen, and S.P. Wang: J. Iron Steel Res. Int., 2020, vol. 27, pp. 367–79.

    Article  Google Scholar 

  16. R.G. Kim, C.W. Hwang, and C.H. Jeon: Appl. Energy, 2014, vol. 129, pp. 299–307.

    Article  CAS  Google Scholar 

  17. G.W. Wang, J.L. Zhang, X.M. Hou, J.A. Shao, and W.W. Geng: Bioresour. Technol., 2015, vol. 177, pp. 66–73.

    Article  CAS  Google Scholar 

  18. N. Kumari, S. Saha, G. Sahu, V. Chauhan, R. Roy, S. Datta, and D.P. Chavan: Biomass Convers. Biorefin., 2020, vol. 12, pp. 2277–90.

    Article  Google Scholar 

  19. X.Y. Chen, Z.X. Jiao, Y. Zhao, and L. Liu: J. Energy Inst., 2022, vol. 102, pp. 42–53.

    Article  Google Scholar 

  20. K.J. Li, J.L. Zhang, M. Barati, R. Khanna, Z.J. Liu, J.B. Zhong, X.J. Niu, S. Ren, T.J. Yang, and V. Sahajwalla: Fuels, 2015, vol. 145, pp. 202–13.

    Article  CAS  Google Scholar 

  21. J.C. Huang, R. Guo, Q. Wang, Z.S. Liu, S. Zhang, and J.F. Su: Fuels, 2020, vol. 263, p. 116694.

    Article  CAS  Google Scholar 

  22. J.C. Huang, R. Guo, L. Tao, Q. Wang, Z.S. Li, S. Zhang, and J.F. Sun: Fuels, 2020, vol. 278, p. 118225.

    Article  CAS  Google Scholar 

  23. Q. Wang, R. Guo, and S. Zhang: Coal Convers., 2012, vol. 35, pp. 12–16.

    Google Scholar 

  24. Y.B. Zhang, C.X. Hou, G.X. Zhang, H.R. Ma, and H. Chen: Hebei Metall., 2021, vol. 11, pp. 20–23.

  25. H.B. Zhu, W.L. Zhan, Z.J. He, Y.C. Yu, Q.H. Pang, and J.H. Zhang: IJMMM, 2020, vol. 27, pp. 1226–33.

    CAS  Google Scholar 

  26. Z.J. Hu, S.L. Wu, Y.P. Cao, C. Wang, and H. Zhou: J. Cent. South Univ. Technol., 2021, vol. 52, pp. 331–38.

    Google Scholar 

  27. Q.H. Liu, K. Wu, R.L. Du, Y. She, and X. Liu: ISIJ Int., 2015, vol. 55, pp. 947–51.

    Article  CAS  Google Scholar 

  28. Y. Wang, Y.H. Luo, and Y.P. Lin: J. Power Eng., 2012, vol. 30, pp. 573–77.

    Google Scholar 

  29. Z.G. Zhang, H.L. Qian, M.D. Zheng, and X.Y. Zhang: Fuel Chem. Process., 2018, vol. 49, pp. 14–16.

    Google Scholar 

  30. H.J. Guo: Metallurgical Physical Chemistry Course, Metallurgical Industry Press, Beijing, 2006, pp. 119–62.

    Google Scholar 

Download references

Acknowledgments

The authors would like to express their thanks for the support to this work by Natural Science Foundation of Shaanxi Province (2019JLM-34).

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qihang Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 226 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Q., Wang, D., Zhao, X. et al. Effect of Carbon Loss Reaction Kinetics on Coke Degradation by Piecewise Analysis. Metall Mater Trans B 54, 2519–2529 (2023). https://doi.org/10.1007/s11663-023-02852-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-023-02852-y

Navigation