Skip to main content

Advertisement

Log in

Large Bubble-Resolved Direct Numerical Simulation for Multiphase Flow Applied to Gas-Stirred Ladles: Grid Resolution and Plug Eccentricity Effects

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

There is a need for bubble-scale modeling of bubbly multiphase turbulent flow in gas-stirred reactors, with a direct resolution of bubble formation, bubble shape, bubble deformation, bubble coalescence and breakup phenomena. A large dispersed-phase resolved direct numerical simulation (LDPR-DNS) based on a fine grid volume of fluid was proposed in our previous work and employed in understanding multiscale phenomena in gas- or mechanically stirred ladles. A remaining challenge is how to determine the required grid resolution for targeted phenomena, particularly when large eddy simulation (LES) is used to resolve the turbulence of dispersed multiphase flow. In this study, we first review the evolution of multiphase flow models and their gaps in the context of a multiscale framework and then clarify the advantages of LDPR-DNS by comparing it with the traditional computational fluid dynamics of multiphase systems. A particular focus was identifying a suitable grid spacing for LDPR-DNS with LES, and several grid schemes were carefully investigated in terms of whether the bubble-scale related flow phenomena are effectively resolved, the LES model realistically captures the utmost part of turbulence, and the balance of interfacial energy transfer between two phases is precisely closed. Finally, the model with a high-resolution grid was applied to reveal the effect of eccentricity on flow pattern, large-scale interface profile and open eye, energy transfer efficiency, inactive zone distribution, and features of the turbulent kinetic energy and its dissipation rate, with a resolution of bubbles. The established LDPR-DNS will tremendously boost the multiphase flow simulation toward a smaller spatio-temporal scale and more complex phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. L.F. Zhang and S. Taniguchi: Int. Mater. Rev., 2000, vol. 45, pp. 59–82.

    Article  CAS  Google Scholar 

  2. Y. Liu, M. Ersson, H. Liu, P.G. Jonsson, and Y. Gan: Metall. Mater. Trans. B, 2019, vol. 50B, pp. 555–77.

    Article  Google Scholar 

  3. D. Mazumdar and J.W. Evans: ISIJ Int., 2004, vol. 44, pp. 447–61.

    Article  CAS  Google Scholar 

  4. D. Mazumdar and R.I.L. Guthrie: ISIJ Int., 1995, vol. 35, pp. 1–20.

    Article  CAS  Google Scholar 

  5. P.G. Jonsson and L.T.I. Josson: ISIJ Int., 2001, vol. 41, pp. 1289–1302.

    Article  CAS  Google Scholar 

  6. D. Mazumdar and J.W. Evans: Modelling of Steelmaking Process, CRC Press, Boca Raton, 2009.

    Book  Google Scholar 

  7. A.N. Conejo: Processes, 2020, vol. 8, p. 8070750.

    Article  Google Scholar 

  8. Y. Liu, M. Ersson, H.P. Liu, P. Jonsson, and Y. Gan: Steel Res. Int., 2019, vol. 90, p. 1800494.

    Article  Google Scholar 

  9. G. Irons, A. Senguttuvan, and K. Krishnapisharody: ISIJ Int., 2015, vol. 55, pp. 1–6.

    Article  CAS  Google Scholar 

  10. L.M. Li, X.J. Li, Z.C. Zhu, and B.K. Li: Powder Technol., 2020, vol. 373, pp. 14–25.

    Article  CAS  Google Scholar 

  11. W.T. Lou and M.Y. Zhu: Metall. Mater. Trans. B, 2013, vol. 44B, pp. 1251–63.

    Article  Google Scholar 

  12. J.P. Bellot, J.S. Kroll-Rabotin, M. Gisselbrecht, M. Joishi, A. Saxena, S. Sanders, and A. Jardy: Materials, 2018, vol. 11, p. 1179.

    Article  Google Scholar 

  13. D. Sichen: Steel Res. Int., 2012, vol. 83, pp. 825–41.

    Article  Google Scholar 

  14. A. Conejo, S. Kitamura, N. Maruoka, and S. Kim: Metall. Mater. Trans. B, 2013, vol. 44B, pp. 914–23.

    Article  Google Scholar 

  15. Q. Li, S.W. Ma, X.Y. Shen, M.M. Li, and Z.S. Zou: Metals, 2021, vol. 11, p. 1596.

    Article  CAS  Google Scholar 

  16. Q. Li, S.W. Ma, X.Y. Shen, M.M. Li, and Z.S. Zou: JOM, 2022, vol. 74, pp. 1588–1600.

    Article  Google Scholar 

  17. Q. Li, X.Y. Shen, S. Guo, M.M. Li, and Z.S. Zou: Steel Res. Int., 2021, vol. 92, p. 2100239.

    Article  CAS  Google Scholar 

  18. Q. Li, S.W. Ma, and Z.S. Zou: Metall. Mater. Trans. B, 2022, vol. 53, pp. 3648–67.

    Article  CAS  Google Scholar 

  19. H.P. Liu, Z.Y. Qi, and M.G. Xu: Steel Res. Int., 2011, vol. 82, pp. 440–58.

    Article  CAS  Google Scholar 

  20. Q. Cao and L. Nastac: Metall. Mater. Trans. B, 2018, vol. 49B, pp. 1388–1404.

    Article  Google Scholar 

  21. R. Singh, D. Mazumdar, and A.K. Ray: ISIJ Int., 2008, vol. 48, pp. 1033–35.

    Article  CAS  Google Scholar 

  22. L.M. Li, Z.Q. Liu, M.X. Cao, and B.K. Li: JOM, 2015, vol. 67, pp. 1459–67.

    Article  CAS  Google Scholar 

  23. L.M. Li, B.K. Li, and Z.Q. Liu: ISIJ Int., 2017, vol. 57, pp. 1–10.

    Article  Google Scholar 

  24. Q. Cao and L. Nastac: Ironmak. Steelmak., 2018, vol. 45, pp. 984–91.

    Article  CAS  Google Scholar 

  25. Q. Cao, A. Pitts, and L. Nastac: Ironmak. Steelmak., 2018, vol. 45, pp. 280–87.

    Article  CAS  Google Scholar 

  26. S. Cloete, J.E. Olsen, and P. Skjetne: Appl. Ocean Res., 2009, vol. 31, pp. 220–25.

    Article  Google Scholar 

  27. S. Cloete, J.J. Eksteen, and S.M. Bradshaw: Miner. Eng., 2013, vol. 46, pp. 16–24.

    Article  Google Scholar 

  28. E.K. Ramasetti, V.V. Visuri, P. Sulasalmi, R. Mattila, and T. Fabritius: Steel Res. Int., 2019, vol. 90, p. 1800365.

    Article  Google Scholar 

  29. E.K. Ramasetti, V.V. Visuri, P. Sulasalmi, T. Palovaara, A.K. Kumar Gupta, and T. Fabritius: Steel Res. Int., 2019, vol. 90, p. 1900088.

    Article  Google Scholar 

  30. V.T. Mantripragada and S. Sarkar: Can. Metal. Q., 2020, vol. 59, pp. 159–68.

    Article  CAS  Google Scholar 

  31. B.H. Zhu, B. Zhang, and K. Chattopadhyay: Metall. Mater. Trans. B, 2020, vol. 51B, pp. 898–905.

    Article  Google Scholar 

  32. R.D. Morales, F.A. Calderón-Hurtado, and K. Chattopadhyay: Metall. Mater. Trans. B, 2020, vol. 51B, pp. 628–48.

    Article  Google Scholar 

  33. R.D. Morales, F.A. Calderón-Hurtado, and K. Chattopadhyay: ISIJ Int., 2019, vol. 59, pp. 1224–33.

    Article  CAS  Google Scholar 

  34. M.M. Li, Q. Li, S.B. Kuang, and Z.S. Zou: Ind. Eng. Chem. Res., 2016, vol. 55, p. 3630.

    Article  CAS  Google Scholar 

  35. Q. Li, M.M. Li, S.B. Kuang, and Z.S. Zou: Metall. Mater. Trans. B, 2015, vol. 46B, pp. 1494–1509.

    Article  Google Scholar 

  36. Q. Li, M.M. Li, S.B. Kuang, and Z.S. Zou: JOM, 2016, vol. 68, pp. 3126–33.

    Article  CAS  Google Scholar 

  37. M.M. Li, Q. Li, Z.S. Zou, and B.K. Li: JOM, 2019, vol. 71, pp. 729–36.

    Article  CAS  Google Scholar 

  38. G. Venturini and M. Goldschmit: Metall. Mater. Trans. B, 2007, vol. 38B, pp. 461–75.

    Article  CAS  Google Scholar 

  39. B.K. Li, H.B. Yin, C.Q. Zhou, and F. Tsukihashi: ISIJ Int., 2008, vol. 48, pp. 1704–11.

    Article  CAS  Google Scholar 

  40. F.P. Maldonado, M.A. Ramirez, A. Conejo, and C. Gonzalez: ISIJ Int., 2011, vol. 51, pp. 1110–18.

    Article  Google Scholar 

  41. F. Karouni, B.P. Wynne, J. Talamantes-Silva, and S. Phillips: Steel Res. Int., 2018, vol. 89, p. 1700550.

    Article  Google Scholar 

  42. V. De Felice, I.L.A. Daoud, B. Dussoubs, A. Jardy, and J.P. Bellot: ISIJ Int., 2012, vol. 52, pp. 1273–80.

    Article  Google Scholar 

  43. J.P. Bellot, V. De Felice, B. Dussoubs, A. Jardy, and S. Hans: Metall. Mater. Trans. B, 2014, vol. 45B, pp. 13–21.

    Article  Google Scholar 

  44. L. Jonsson and P. Jönsson: ISIJ Int., 1996, vol. 36, pp. 1127–34.

    Article  CAS  Google Scholar 

  45. Q. Pan, S.T. Johansen, J.E. Olsen, M. Reed, and L.R. Sætrana: Chem. Eng. Sci., 2021, vol. 229, p. 116059.

    Article  CAS  Google Scholar 

  46. M.Y. Zhu, T. Inomoto, I. Sawada, and T. Hsiao: ISIJ Int., 1995, vol. 35, pp. 472–79.

    Article  CAS  Google Scholar 

  47. M.Y. Zhu, I. Sawada, and N. Yamasaki: ISIJ Int., 1996, vol. 36, pp. 503–11.

    Article  CAS  Google Scholar 

  48. L. Jonsson, D. Sichen, and P. Jönsson: ISIJ Int., 1998, vol. 38, pp. 260–67.

    Article  CAS  Google Scholar 

  49. Y. Sheng and G.A. Irons: Metall. Mater. Trans. B, 1993, vol. 24B, pp. 695–705.

    Article  CAS  Google Scholar 

  50. D. Mazumdar and R.I.L. Guthrie: ISIJ Int., 1994, vol. 34, pp. 384–92.

    Article  CAS  Google Scholar 

  51. H. Zhang, A.N. Conejo, A. Dutta, M.A. Ramírez-Argáez, and H. Yan: Ironmak. Steelmak., 2022, vol. 49, p. 2078263.

    Google Scholar 

  52. W.J. Liu, J. Lee, X.P. Guo, A.K. Silaen, and C.Q. Zhou: Steel Res. Int., 2019, vol. 90, p. 1800396.

    Article  Google Scholar 

  53. H.J. Duan, Y. Ren, and L.F. Zhang: JOM, 2018, vol. 70, pp. 2128–38.

    Article  CAS  Google Scholar 

  54. C. Pena-Monferrer, G. Monros-Andreu, S. Chiva, R. Martinez-Cuenca, and J.L. Munoz-Cobo: Chem. Eng. Sci., 2018, vol. 177, pp. 537–56.

    Article  CAS  Google Scholar 

  55. H. Takeda, N. Esaki, K. Doi, H. Murakami, K. Yamasaki, and Y. Kawase: J. Chem. Eng. Jpn., 2004, vol. 37, pp. 976–89.

    Article  CAS  Google Scholar 

  56. W.T. Lou and M.Y. Zhu: Metall. Mater. Trans. B, 2017, vol. 48B, pp. 3196–3212.

    Article  Google Scholar 

  57. X. Guo, J. Godinez, N.J. Walla, A.K. Silaen, H. Oltmann, V. Thapliyal, A. Bhansali, E. Pretorius, and C.Q. Zhou: Processes, 2021, vol. 9, p. 1048.

    Article  CAS  Google Scholar 

  58. G.J. Chen and S.P. He: JOM, 2019, vol. 71, pp. 4206–14.

    Article  CAS  Google Scholar 

  59. M. Saeedipour and S. Schneiderbauer: Int. J. Multiphase Flow, 2021, vol. 144, p. 103790.

    Article  Google Scholar 

  60. A. Bußmann, J. Buchmeier, M.S. Dodd, S. Adami, and I. Bermejo-Moreno: Comput. Fluids, 2022, vol. 248, p. 105665.

    Article  Google Scholar 

  61. Q. Li and P.C. Pistorius: Metall. Mater. Trans. B, 2021, vol. 52B, pp. 1532–49.

    Article  Google Scholar 

  62. Q. Li and P.C. Pistorius: JOM, 2021, vol. 73, pp. 2888–99.

    Article  Google Scholar 

  63. J.U. Brackbill, D.B. Kothe, and C. Zemach: J. Comp. Phys., 1992, vol. 100, pp. 335–54.

    Article  CAS  Google Scholar 

  64. C.W. Hirt and B.D. Nichols: Comp. Phys., 1981, vol. 39, pp. 201–25.

    Article  Google Scholar 

  65. O. Ubbink and R.I. Isssa: J. Comp. Phys., 1999, vol. 153, pp. 26–50.

    Article  Google Scholar 

  66. C.M. Winkler and S.L. Rani: Int. J. Numer. Methods H, 2006, vol. 16(2), pp. 226–39.

    Article  Google Scholar 

  67. K. Horiuti: J. Phys. Soc. Jpn., 1985, vol. 54, pp. 2855–65.

    Article  Google Scholar 

  68. M. Lesieur and O. Metais: Annu. Rev. Fluid Mech., 1996, vol. 28, pp. 45–82.

    Article  Google Scholar 

  69. K. Yonezawa and K. Schwerdtfeger: Metall. Mater. Trans. B, 1999, vol. 30B, pp. 411–18.

    Article  CAS  Google Scholar 

  70. P.E. Anagbo, J.K. Brimacombe, and A.H. Castillejos: Can. Metal. Q., 1989, vol. 28, pp. 323–30.

    Article  CAS  Google Scholar 

  71. S.B. Pope: Turbulence Flows, Cambridge University Press, Cambridge, 2000.

    Book  Google Scholar 

  72. C.T. Crowe, J.D. Schwarzkopf, M. Sommerfeld, and Y. Tsuji: Multiphase Flows with Droplets and Particles, CRC Press, Boca Raton, 2012.

    Google Scholar 

  73. L.M. Li, Z.Q. Liu, B.K. Li, H. Matsuura, and F. Tsukihashi: ISIJ Int., 2015, vol. 55, pp. 1337–46.

    Article  CAS  Google Scholar 

  74. A.M. Amaro-villeda, M.A. Ramirez-argaez, and A.N. Conejo: ISIJ Int., 2014, vol. 54, pp. 1–8.

    Article  CAS  Google Scholar 

  75. M.S.C. Terrazas and A.N. Conejo: Metall. Mater. Trans. B, 2015, vol. 46B, pp. 711–18.

    Article  Google Scholar 

Download references

Acknowledgments

The work is supported by the National Natural Science Foundation of China under Grant No. 52074079 and No. 52274328, and the Fundamental Research Funds of the Central Universities of China under Grant No. N2125018. Qiang Li acknowledges the financial support from China Scholarship Council (No. 201706085028) as a visiting scholar at Carnegie Mellon University, USA.

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: There was a typographical error in the References section, on reference number 60, Buẞmann was misspelled, it has been updated.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (MP4 4751 kb)

Supplementary file2 (MP4 12907 kb)

Supplementary file3 (MP4 62098 kb)

Supplementary file4 (MP4 71598 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Q., Pistorius, P.C. Large Bubble-Resolved Direct Numerical Simulation for Multiphase Flow Applied to Gas-Stirred Ladles: Grid Resolution and Plug Eccentricity Effects. Metall Mater Trans B 54, 1290–1313 (2023). https://doi.org/10.1007/s11663-023-02762-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-023-02762-z

Navigation