Skip to main content
Log in

Integrated Approach to Density-Based Spatial Clustering of Applications with Noise and Dynamic Time Warping for Breakout Prediction in Slab Continuous Casting

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Mold breakout is a catastrophic accident that has serious impacts on smooth production, slab quality, and caster equipment. Accurate identification and prediction of an impending breakout are always top priorities in continuous casting operations. In view of crucial common features of mold copper plate temperatures during a breakout, such as time lag and space inversion, the concepts of density-based spatial clustering of applications with noise and dynamic time warping are introduced, and an integrated novel method for breakout prediction is developed. Through extracting and fusing the representative singularity and approximation of temperature variation, the typical temporal and spatial temperature characteristics during breakout can be distinguished and predicted accurately. Compared with traditional methods of logical judgment and artificial neural network, the method based on clustering does not need to modify forecast thresholds or parameters artificially, which overcomes the limitation of model dependence on human beings, and demonstrates excellent adaptability and robustness for online abnormality prevention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig.10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Y. Zhang, W. Wang, and H. Zhang: Metall. Mater. Trans. B, 2016, vol. 47, pp. 2244-2252.

    Article  Google Scholar 

  2. F. He, D.F. He, Z.H. Deng, A.J. Xu, and N.Y. Tian: Iron. Steel. 2015, 42: 194-208.

    Article  CAS  Google Scholar 

  3. I. Sohn, T.J. Piccone, and T.T. Natarajan: Iron Steel Technol, 2008, vol. 5, pp. 44-50.

    Google Scholar 

  4. S.I. Luk’yanov, E.S. Suspitsyn, S.S. Krasilnikov, and D.V. Shvidchenko: Int. J. Adv. Manuf. Technol., 2015, vol. 79, pp. 1861-68.

    Article  Google Scholar 

  5. Y. Liu, X. D. Wang, F. M. Du, L. W. Kong, M. Yao, and X. B. Zhang: Iron. Steel., 2015, vol. 42, pp. 417-23.

    Article  CAS  Google Scholar 

  6. F. He, L. Zhou, and Z. H. Deng: J. Process Control, 2015, vol. 29, pp. 1-10.

    Article  CAS  Google Scholar 

  7. Y. Liu, X.D. Wang, M. Yao, Z.B. Zhang, and H. Ma: Iron. Steel., 2014, vol. 41, pp. 748-55.

    Article  CAS  Google Scholar 

  8. B. Zhang, R. Zhang, G. Wang, L. Sun, Z. Zhang, and Q. Li: Int. J. Modell. Identif. Control, 2012, vol. 16, pp. 199-205.

    Article  CAS  Google Scholar 

  9. Y. Liu, X. Wang, F. Du, M. Yao, Y. Gao, F. Wang, and J. Wang: Int. J. Adv. Manuf. Technol., 2017, vol. 88, pp. 1-8.

    Article  Google Scholar 

  10. C. Ji, Z.Z. Cai, N.B. Tao, J.L. Yang, and M.Y. Zhu: Proc. 31st Chin. Contr. Conf., Hefei, 2012, pp. 3402–06.

  11. R. Xu and D.C.W. Ii: IEEE Trans. Neural Networks, 2005, vol. 16, pp. 645-78.

    Article  Google Scholar 

  12. M. Ester: Proc. 2nd Int. Conf. Knowledge Discovery and Data Mining (KDD-96), Portland, OR, 1996, pp. 226–31.

  13. D. Birant, and A. Kut: Data Knowl. Eng., 2007, vol. 60, pp. 208-21.

    Article  Google Scholar 

  14. B. Borah, and D.K. Bhattacharyya: Proc. Int. Conf. Intell. Sens. Inf. Process., Chennai, 2004, pp. 92–96.

  15. L. I. Zheng-Xin, F. M. Zhang, and L. I. Ke-Wu: Pattern Recognit. Artif. Intell., 2011, vol. 24, pp. 425-30.

    Google Scholar 

  16. I. Assent, M. Wichterich, R. Krieger, H. Kremer, and T. Seidl: Proc. Vldb Endowment, 2009, vol. 2, pp. 826-37.

    Article  Google Scholar 

  17. K. E. Blazek and I. G. Saucedo: ISIJ Int., 1990, vol. 30, pp. 435-43.

    Article  CAS  Google Scholar 

  18. B. Salah, M. Zoheir, Z. Slimane, and B. Jurgen: Appl. Soft Comput., 2015, vol. 34, pp. 120-28.

    Article  Google Scholar 

  19. T. Kajitani, Y. Kato, K. Harada, K. Saito, and K. Harashima: ISIJ Int., 2008, vol. 48, pp. 1215-24.

    Article  CAS  Google Scholar 

  20. F. Petitjean, A. Ketterlin, and P. Gançarski: Pattern Recognit., 2011, vol. 44, pp. 678-93.

    Article  Google Scholar 

  21. S. Salvador and P. Chan: Intell. Data Anal., 2007, vol. 11, pp. 561-80.

    Article  Google Scholar 

  22. Y. Wan, X.L. Chen, and Y. Shi: J. Comput. Appl. Math., 2017, vol. 319, pp. 514-20.

    Article  Google Scholar 

  23. W.T. Wang, Y.L. Wu, C.Y. Tang, and M.K. Hor: Proc. 2015 Int. Conf. Mach. Learn. Cybern. (ICMLC), Guangzhou, 2015, pp. 445–51.

  24. T.N. Tran, K. Drab, and M. Daszykowski: Chemom. Intell. Lab. Syst., 2013, vol. 120, pp. 92-96.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge financial support from the National Natural Science Foundation of China (51474047). The support of the Fundamental Research Funds for the Central Universities, the Key Laboratory of Solidification Control and Digital Preparation Technology (Liaoning Province), and Supercomputing Center of Dalian University of Technology are also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xudong Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted November 14, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duan, H., Wang, X., Bai, Y. et al. Integrated Approach to Density-Based Spatial Clustering of Applications with Noise and Dynamic Time Warping for Breakout Prediction in Slab Continuous Casting. Metall Mater Trans B 50, 2343–2353 (2019). https://doi.org/10.1007/s11663-019-01633-w

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-019-01633-w

Navigation