Skip to main content
Log in

Sensitivity of Viscosity on Molten Ti Infusion into a B4C-Packed Bed at the Microscale

  • Communication
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The effect of the surface tension–viscosity dissipation driving liquid Ti flow into a B4C packed bed was analyzed at 1941 K and 2573 K. The model consisted of randomized size distributions of pores (1 to 10 µm) mimicking a packed bed to determine the depth of infusion. Statistical uncertainty was determined as a function of viscosity and pore geometry. The computations were performed with our in-house software, which incorporates a directed acyclic graph and modified nodal analysis algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. V. Kumar, C.K. Harris, A. Bronson, S. Shantha-Kumar, and A. Medina: Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2016, vol. 47, pp. 108–15.

    Article  Google Scholar 

  2. K.A. Semlak and F.N. Rhines: Trans. TMS-AIME, 1958, vol. 212, pp. 325–31.

    Google Scholar 

  3. A. Mortensen and I. Jin: International Materials Reviews, 1992, vol. 37, pp. 101–28.

    Article  Google Scholar 

  4. C. Garcia-Cordovilla, E. Louis, and J. Narciso: Acta Materialia, 1999, vol. 47, pp. 4461–79.

    Article  Google Scholar 

  5. J.M. Molina, E. Piñero, J. Narciso, C. García-Cordovilla, and E. Louis: Current Opinion in Solid State and Materials Science, 2005, vol. 9, pp. 202–10.

    Article  Google Scholar 

  6. M.J. Blunt: Curr. Opin. Colloid Interface Sci., 2001, vol. 6, pp. 197–207, https://doi.org/10.1016/S1359-0294(01)00084-X.

  7. M. Christie, V. Demyanov, and D. Erbas: J. Comput. Phys., 2006, vol. 217, pp. 143–58, https://doi.org/10.1016/j.jcp.2006.01.026.

  8. A.L. Maximenko and E.A. Olevsky: Scripta Materialia, 2018, vol. 149, pp. 75–78.

    Article  Google Scholar 

  9. S. Bakke and P.E. Øren: Spe Journal, 1997, vol. 2, pp. 136–49.

    Article  Google Scholar 

  10. Y. Zhu, P.J. Fox, and J.P. Morris: International journal for numerical and analytical methods in geomechanics, 1999, vol. 23, pp. 881–904.

    Article  Google Scholar 

  11. J. Shalf, S. Dosanjh, and J. Morrison: in High Performance Computing for Computational Science—VECPAR 2010, J.M.L.M. Palma, M. Daydé, O. Marques, and J.C. Lopes, eds., Springer, Berlin, Heidelberg, 2011, pp. 1–25, https://doi.org/10.1007/978-3-642-19328-6_1.

  12. K. Bergman, S. Borkar, D. Campbell, W. Carlson, W. Dally, M. Denneau, P. Franzon, W. Harrod, K. Hill, and J. Hiller: Exascale Computing Study: Technology Challenges in Achieving Exascale Systems, 2008.

  13. M.A. Heroux, E.T. Phipps, A.G. Salinger, H.K. Thornquist, R.S. Tuminaro, J.M. Willenbring, A. Williams, K.S. Stanley, R.A. Bartlett, V.E. Howle, R.J. Hoekstra, J.J. Hu, T.G. Kolda, R.B. Lehoucq, K.R. Long, and R.P. Pawlowski: ACM Trans. Math. Softw., 2005, vol. 3, p. 31.

  14. H. Carter Edwards, C.R. Trott, and D. Sunderland: J. Parallel Distrib. Comput., 2014, vol. 74, pp. 3202–16.

  15. B.M. Adams, W.J. Bohnhoff, K.R. Dalbey, J.P. Eddy, M.S. Eldred, D.M. Gay, K. Haskell, P.D. Hough, and L.P. Swiler: Sandia National Laboratories, Tech. Rep. SAND2010-2183.

  16. E. Akhmatskaya, B.D. Todd, P.J. Daivis, D.J. Evans, K.E. Gubbins, and L.A. Pozhar: The Journal of Chemical Physics, 1997, vol. 106, pp. 4684–95.

    Article  Google Scholar 

  17. P. Van Marcke, B. Verleye, J. Carmeliet, D. Roose, and R. Swennen: Transport in Porous Media, 2010, vol. 85, pp. 451–76.

    Article  Google Scholar 

  18. P.C. Reeves and M.A. Celia: Water Resources Research, 1996, vol. 32, pp. 2345–58.

    Article  Google Scholar 

  19. Y. Bernabé, M. Li, and A. Maineult (2010) J. Geophys. Res. https://doi.org/10.1029/2010jb007444.

    Google Scholar 

  20. E.O. Einset: Chemical Engineering Science, 1998, vol. 53, pp. 1027–39.

    Article  Google Scholar 

  21. B.A. Latella, L. Henkel, and E.G. Mehrtens: Journal of Materials Science, 2006, vol. 41, pp. 423–30.

    Article  Google Scholar 

  22. V. Joekar-Niasar and S.M. Hassanizadeh: Critical Reviews in Environmental Science and Technology, 2012, vol. 42, pp. 1895–1976.

    Article  Google Scholar 

  23. P.M. Delgado, V.M.K. Kotteda, and V. Kumar: Geosciences, 2019, vol. 9, p. 29.

    Article  Google Scholar 

  24. J.L. Gross and J. Yellen: Handbook of Graph Theory, CRC press, Boca Raton, 2004.

    Google Scholar 

  25. A.K. Chattopadhyay: “Next Generation Exa-Scale Capable Software for High Fidelity Physics, vol. AAI10635776, ETD Collection for University of Texas, El Paso, 2017.

    Google Scholar 

  26. S. Shantha-Kumar: Reaction of Liquid Aluminium-Samarium Alloys with B4C at Ultra High Temperatures, vol. AAI10635776, ETD Collection for University of Texas, El Paso, 2015.

    Google Scholar 

  27. J. Jakeman, M. Eldred, and D. Xiu: Journal of Computational Physics, 2010, vol. 229, pp. 4648–63.

    Article  Google Scholar 

  28. B.M. Adams, M.S. Ebeida, M.S. Eldred, J.D. Jakeman, L.P. Swiler, J.A. Stephens, D.M. Vigil, T.M. Wildey, W.J. Bohnhoff, and J.P. Eddy: Dakota, a Multilevel Parallel Object-Oriented Framework for Design Optimization, Parameter Estimation, Uncertainty Quantification, and Sensitivity Analysis Version 6.0 Theory Manual, Sandia National Lab.(SNL-NM), Albuquerque, NM (United States), 2014.

  29. T. Ishikawa, P.-F. Paradis, J.T. Okada, and Y. Watanabe: Meas. Sci. Technol., 2012, vol. 23, art. id 025305, https://doi.org/10.1088/0957-0233/23/2/025305.

  30. J.M. Molina, J. Narciso, and E. Louis: Scr. Mater., 2010, vol. 62, pp. 961–65.

    Article  Google Scholar 

  31. B. Gallois and C.H.P. Lupis: Metallurgical Transactions B, 1981, vol. 12B, pp. 549–57.

    Article  Google Scholar 

  32. R.E. Loehman, K. Ewsuk, and A.P. Tomsia: Journal of the American Ceramic Society, 1996, vol. 79, pp. 27–32.

    Article  Google Scholar 

Download references

This work was supported by the U.S. Department of Energy (DOE) National Energy Technology Laboratory (DE – FE_0026220, DE-FE0002407), Air Force Office of Scientific Research (BAA-AFRL-AFOSR-2016-0007, FA9550-12-1-0242, and FA9550-17-1-0393), XSEDE computational resources (TG-ASC170041), Sandia National Laboratories, and Computational Science and Mechanical Engineering programs at the University of Texas at El Paso.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Krushnarao Kotteda.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted November 4, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kotteda, V.M.K., Schiaffino, A., Chattopadhyay, A. et al. Sensitivity of Viscosity on Molten Ti Infusion into a B4C-Packed Bed at the Microscale. Metall Mater Trans B 50, 1559–1565 (2019). https://doi.org/10.1007/s11663-019-01618-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-019-01618-9

Navigation