Skip to main content
Log in

Mechanism of Ball Milling Effect on Carbothermic Reduction of Industrial Magnesia by Coke

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Mechanical milling always improves the chemical reaction rate in the metallurgy process. The experiment proved that ball milling treatment on raw materials, including industrial magnesia, metallurgical coke, and fluoride calcium, could increase greatly the reaction rate of magnesia. The reaction samples and residues were analyzed by particle size measurement, X-ray diffraction (XRD) analysis, Raman spectroscopy analysis, scanning electron microscope (SEM), and transmission electron microscope (TEM). The results suggested that the positive effect of ball milling on the reaction rate came from three aspects. Ball milling could decrease magnesia particle size and peel coke into graphite sheets to enlarge their contact surface. Meanwhile, ball milling could slightly destroy the crystal grain surface of magnesia and decrease the crystallization of graphite. The nanometer-scale magnesia particles and graphite sheets would stably and strongly attract together after a longer time ball milling. The possible evolution of the particles during ball milling was given, which explained the mechanism of the ball milling effect on the carbothermic reduction of industrial magnesia by coke.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. JEOL is a trademark of Japan Electron Optics Ltd., Tokyo.

References

  1. S. Ramakrishnan and P. Koltun: Resource, Conserv. Recycl., 2004, vol. 42, pp. 49–64.

    Article  Google Scholar 

  2. F. Cherubini, M. Raugei, and S. Ulgiati: Resource, Conserv. Recycl., 2008, vol. 52, pp. 1093–1100.

    Article  Google Scholar 

  3. H.W. Ma, Y. Cao, Y. Jiang, X.W. Wu, and Y.Q. Liu: Geosciences, 2008, vol. 5, pp. 829–37.

    Google Scholar 

  4. J.D. Du, W.J. Han, and Y.H. Peng: J. Cleaner Prod., 2010, vol. 18, pp. 112–19.

    Article  Google Scholar 

  5. M.V. Belousov, I.V. Butorina, and D.F. Rakipov: Tsv. Metally., 2013, vol. 7, pp. 64–68.

    Google Scholar 

  6. J.H. Li, Y. Zhang, S. Shao, and S.S. Zhang: J. Cleaner Prod., 2015, vol. 91, pp. 170–79.

    Article  Google Scholar 

  7. R. Winand, M.V. Gysel, A. Fontana, L. Segers, and J.C. Carlier: Trans. Inst. Min. Metall. C, 1990, vol. 99, pp. 101–11.

    Google Scholar 

  8. I. Hischier, B.A. Chubukov, M.A. Wallace, R.P. Fisher, A.W. Palumbo, S.C. Rowe, A.J. Croehn, and A.W. Weimer: Solar Energy, 2016, vol. 139, pp. 389–97.

    Article  Google Scholar 

  9. G. Brooks, S. Trang, P. Witt, M.N.H. Khan, and M. Nagle: JOM, 2006, vol. 58, pp. 51–55.

    Article  Google Scholar 

  10. R.T. Li, W. Pan, and S. Masamichi: Metall. Mater. Trans. B, 2003, vol. 34B, pp. 433–37.

    Google Scholar 

  11. Y. Tian, T. Qu, B. Yang, Y.N. Dai, B.Q. Xu, and S. Geng: Metall. Mater. Trans. B, 2012, vol. 43B, pp. 657–61.

    Article  Google Scholar 

  12. Y. Jiang, H.W. Ma, and Y.Q. Liu: Adv. Mater. Res., 2013, vols. 652–654, pp. 2552–55.

    Article  Google Scholar 

  13. M. Nusheh, H. Yoozbashizadeh, M. Askari, N. Kuwata, J. Kawamura, J. Kano, F. Saito, H. Kobatake, and H. Fukuyama: ISIJ Int., 2010, vol. 50, pp. 668–762.

    Article  Google Scholar 

  14. B. Chubukov, S. Rowe, A. Palumbo, I. Hischier, and A. Weimer: Magnesium Technology 2017, San Diego, CA, 2017, TMS, Warrendale, PA, 2017, pp. 199–202.

  15. M. Chen, A.T. Tang, and X. Xuan: Trans. Nonferrous Met. Soc. China, 2015, vol. 25, pp. 4201–06.

    Article  Google Scholar 

  16. Y. Chen, T. Hwang, M. Marsh, and J.S. Williams: Metall. Mater. Trans. A, 1997, vol. 28A, pp. 1115–21.

    Article  Google Scholar 

  17. F.S. Pan, K. Li, A.T. Tang, Y. Wang, J. Zhang, and Z.X. Guo: Mater. Sci. Forum, 2003, vols. 437–438, pp. 105–08.

    Article  Google Scholar 

  18. N.J. Welham: Metall. Mater. Trans. A, 2000, vol. 31A, pp. 283–89.

    Article  Google Scholar 

  19. N.J. Welham: Int. J. Miner. Process, 2002, vol. 67, pp. 187–98.

    Article  Google Scholar 

  20. K.J. Vahdati, Y. Kashiwaya, K. Ishii, and H. Suzuki: ISIJ Int., 2002, vol. 42, pp. 13–22.

    Article  Google Scholar 

  21. P. Pourghahramani and E. Forssberg: Int. J. Miner. Process., 2007, vol. 82, pp. 96–105.

    Article  Google Scholar 

  22. M. Erdemoğlu: Int. J. Miner. Process., 2009, vol. 92, pp. 144–52.

    Article  Google Scholar 

  23. Y. Jiang, Y.Q. Liu, H.W. Ma, and W.G. Zhou: Metall. Mater. Trans. B, 2016, vol. 47B, pp. 837–45.

    Article  Google Scholar 

  24. Henan HongXing Mining Machinery Co., Ltd.: “What Are the Factors That Affect the Working Performance of Ball Mill?,” 2012, http://www.hxjq.com.cn/n176.html, accessed Sept. 25, 2018.

  25. L.G. Austin, R.R. Klimpel, and P.T. Luckie: Process Engineering of Size Reduction: Ball Milling, SME-AIME, New York, NY, 1984, pp. 243–60.

    Google Scholar 

  26. W.J. Hao, Q.J. Tian, and Y.G. Cai: Min. Process. Equip., 2010, vol. 38, pp. 72–75.

    Google Scholar 

  27. Y. Kashiwaya, R. Suzuki, and K. Ishii: ISIJ Int., 2011, vol. 51, pp. 1213–19.

    Article  Google Scholar 

  28. F. Tuinstra and J.L. Koenig: J. Chem. Phys., 1970, vol. 53, pp. 1126–30.

    Article  Google Scholar 

  29. N.J. Welham, V. Berbenni, and P.G. Chapman: J. Alloys Compd., 2003, vol. 349, pp. 55–263.

    Article  Google Scholar 

  30. A.C. Ferrari and J. Robertson: Phys. Rev. B, 2000, vol. 61, pp. 95–107.

    Article  Google Scholar 

  31. D.S. Knight and W.B. White: J. Mater. Res., 1989, vol. 4, pp. 385–93.

    Article  Google Scholar 

  32. A.G. Bannov, N.F. Uvarov, A.V. Ukhina, I.S. Chukanov, K.D. Dyukova, and G.G. Kuvshinov: Carbon, 2012, vol. 50, pp. 1090–98.

    Article  Google Scholar 

  33. J.M. Rahl, K.M. Anderson, M.T. Brandon, and C. Fassoulas: Earth Planet. Sci. Lett., 2005, vol. 240, pp. 339–54.

    Article  Google Scholar 

  34. M. Marques, I. Suárez-Ruiz, D. Flores, A. Guedes, and S. Rodrigues: Int. J. Coal Geol., 2009, vol. 77, pp. 377–82.

    Article  Google Scholar 

  35. J.E. Oghenevweta, D. Wexler, and A. Calka: Mater. Charact., 2018, vol. 140, pp. 299–311.

    Article  Google Scholar 

  36. N.J. Welham, V. Berbenni, and P.G. Chapman: Carbon, 2002, vol. 40, pp. 2307–15.

    Article  Google Scholar 

  37. N. Pierard, A. Fonseca, J.F. Colomer, C. Bossuot, J.M. Benoit, and G.V. Tendeloo: Carbon, 2004, vol. 42, pp. 1691–97.

    Article  Google Scholar 

  38. M. Pandurangappa, T. Ramakrishnappa, and R.G. Compton: Carbon, 2009, vol. 47, pp. 2186–93.

    Article  Google Scholar 

  39. A. Kumar, M.K. Banerjee, and U. Pande: Powder Technol., 2018, vol. 331, pp. 41–51.

    Article  Google Scholar 

  40. X. Wu, L.L. Zhao, J.Y. Jin, S. Pan, W. Li, X.Y. Jin, G.J. Wang, M.F. Zhou, and G. Frenking: Science, 2018, vol. 361, pp. 912–16.

    Article  Google Scholar 

  41. B.S. Murty and S. Ranganathan: Int. Mater. Rev., 1998, vol. 43, pp. 101–41.

    Article  Google Scholar 

  42. S. Rosenkranz, S. Breitung-Faes, and A. Kwade: Powder Technol., 2011, vol. 212, pp. 224–30.

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge ‘Fundamental Research Funds for the Central Universities (2652015195)’ for the financial support to realize this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun Jiang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted October 16, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, Y., Liu, YQ., Yan, ZY. et al. Mechanism of Ball Milling Effect on Carbothermic Reduction of Industrial Magnesia by Coke. Metall Mater Trans B 50, 1617–1626 (2019). https://doi.org/10.1007/s11663-019-01599-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-019-01599-9

Navigation