Skip to main content
Log in

Optimized Electromagnetic Fields Levitate Bulk Metallic Materials

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The bulk metallic electromagnetic levitation technique has a promising application prospect in condensed physics and materials science. In order to resolve the problem of weak levitation force and the small size of samples, an optimized solution based on finite element analysis (FEA) is developed to seek the best electromagnetic field distribution in the levitation zone. The influence of material properties on the distribution of magnetic flux density, surface pressure, and the Lorentz force were studied by the FEA method with various sample sizes of titanium and copper balls. The levitation capability of cylindrical coil system which consists of a single-layer coil with an inner diameter of 30 mm and the levitated object with a diameter of 20 mm was analyzed. To keep a balance between the turn number and increment efficiency of force, the best number of 7 turns is confirmed. Then, two types of optimized coils were predicted by numerical simulations, and the levitation force is improved drastically. The double-layer coil displays an outstanding levitation capability owing to the strong electromagnetic field generated by multilayer turns. In addition, 5 to 50 g aluminum, titanium, copper, and nickel are levitated by the above three kinds of coils and the levitation capacities are validated from the recorded data of the minimum operating current that can levitate the samples. The experimental results show good agreements with the simulation results, and the minimum current for optimized coils is reduced efficiently.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

REFERENCES

  1. J. E. Rodriguez, C. Kreischer, T. Volkmann, and D. M. Matson, Acta Mater., 2017, vol. 122, pp. 431-437.

    Article  CAS  Google Scholar 

  2. P. Lü and H. P. Wang, Scr. Mater., 2017, vol. 137, pp. 31-35.

    Article  Google Scholar 

  3. G. Lohofer and S. Schneider, High Temp.-High Press., 2016, vol. 45, pp. 255-271.

    Google Scholar 

  4. A. Schmon, K. Aziz, and G. Pottlacher, Metall. Mater. Trans. A, 2015, vol. 46, pp. 2674-2679.

    Article  Google Scholar 

  5. D. L. Price: High-temperature levitated materials. Cambridge University Press, New York, 2010, p. 94.

    Book  Google Scholar 

  6. A. J. Sangster: Fundamentals of Electromagnetic Levitation: Engineering Sustainability Through Efficiency. The Institution of Engineering and Technology, London, 2012, p. 56.

    Google Scholar 

  7. S. Asai: Electromagnetic Processing of Materials: Materials Processing by Using Electric and Magnetic Functions. Springer Science & Business Media, Dordrecht, 2012, p. 87.

    Google Scholar 

  8. S. I. Bakhtiyarov and D. A. Siginer, Fluid Dyn. Mater. Process., 2008, vol. 4, pp. 163-184.

    Google Scholar 

  9. K. Zhou, H. P. Wang, J. Chang, and B. Wei, Chem. Phys. Lett., 2015, vol. 639, pp. 105-108.

    Article  CAS  Google Scholar 

  10. S. I. Bakhtiyarov and D. A. Siginer, Fluid Dyn. Mater. Process., 2009, vol. 5, pp. 1-22.

    Google Scholar 

  11. A. V. Mohammadi and M. Halali, RSC Advances, 2014, vol. 4, pp. 7104-7108.

    Article  CAS  Google Scholar 

  12. M. Vaghayenegar, A. Kermanpur, M. H. Abbasi, and H. Ghasemi Yazdabadi, Adv. Powder Technol., 2010, vol. 21, pp. 556-563.

    Article  CAS  Google Scholar 

  13. A. Kermanpur, M. Jafari, and M. Vaghayenegar, J. Mater. Process. Technol., 2011, vol. 211, pp. 222-229.

    Article  CAS  Google Scholar 

  14. A. Khodaei, M. Hasannasab, N. Amousoltani, and A. Kermanpur, Mater. Res. Bull., 2016, vol. 74, pp. 212-217.

    Article  CAS  Google Scholar 

  15. G. Yoshikawa, K. Hirata, and F. Miyasaka, IEEE T. Magn., 2011, vol. 47, pp. 1394-1397.

    Article  Google Scholar 

  16. Y. H. Wu, J. Chang, W. L. Wang, L. Hu, S. J. Yang, and B. Wei, Acta Mater., 2017, vol. 129, pp. 366-377.

    Article  CAS  Google Scholar 

  17. A. Bansal, P. Chapelle, Y. Delannoy, E. Waz, P. Le Brun, and J. P. Bellot, Metall. Mater. Trans. B, 2015, vol. 46, pp. 2096-2109.

    Article  Google Scholar 

  18. L. Gao, Z. Shi, D. Li, G. Zhang, Y. Yang, A. McLean, and K. Chattopadhyay, Metall. Mater. Trans. B, 2015, vol. 47, pp. 537-547.

    Google Scholar 

  19. V. Bojarevics, A. A. Roy, and K. Pericleous, Magnetohydrodynamics, 2010, vol. 46, pp. 317-329.

    Google Scholar 

  20. W. H. Sillekens, D. J. Jarvis, A. Vorozhtsov, V. Bojarevics, C. F. Badini, M. Pavese, S. Terzi, L. Salvo, L. Katsarou, and H. Dieringa, Metall. Mater. Trans. A, 2014, vol. 45A, pp. 3349-3361.

    Article  Google Scholar 

  21. V. Bojarevics, G. S. Djambazov, and K. A. Pericleous, Metall. Mater. Trans. A, 2015, vol. 46A, pp. 2884-2892.

    Article  Google Scholar 

  22. S. R. Sagardia and R. Segsworth, IEEE T. Ind. Appl., 1977, vol. IA-13, pp. 49-52.

    Article  Google Scholar 

  23. M. Bullo, F. Dughiero, M. Forzan, and S. Lupi, Magnetohydrodynamics, 2007, vol. 43, pp. 151-159.

    Google Scholar 

  24. L. Feng and W. Y. Shi, Metall. Mater. Trans. B, 2015, vol. 46, pp. 1895-1901.

    Article  Google Scholar 

  25. B. Li and S. Song, Microgravity Sci. Technol., 1998, vol. 11, pp. 134-143.

    CAS  Google Scholar 

  26. S. Spitans, E. Baake, B. Nacke, and A. Jakovics, Metall. Mater. Trans. B, 2016, vol. 47, pp. 522-536.

    Article  Google Scholar 

  27. J. Lee, X. Xiao, D. M. Matson, and R. W. Hyers, Metall. Mater. Trans. B, 2015, vol. 46, pp. 199-207.

    Article  Google Scholar 

  28. Z. L. Royer, C. Tackes, R. Lesar, and R. E. Napolitano, J. Appl. Phys., 2013, vol. 113, p. 214901.

    Article  Google Scholar 

  29. S. Roberts, S. Kok, J. Zietsman, and H. Inglis: 11th World Congress on Structural and Multidisciplinary Optimization, Sydney, 2015.

  30. Z. Moghimi, M. Halali, and M. Nusheh, Metall. Mater. Trans. B, 2006, vol. 37, pp. 997-1005.

    Article  CAS  Google Scholar 

  31. S. I. Bakhtiyarov and D. A. Siginer, Fluid Dyn. Mater. Process., 2008, vol. 4, pp. 99-112.

    Google Scholar 

  32. K. F. Wang, S. Chandrasekar and Henry T. Y. Yang, J. Mater. Eng. Perform., 1992, vol. 1, pp. 97-112.

    Article  CAS  Google Scholar 

  33. W. Brisley and B. S. Thornton, Br. J. Appl. Phys., 1963, vol. 14, pp. 682-686.

    Article  Google Scholar 

  34. L. Gao, Z. Shi, D. Li, A. McLean, and K. Chattopadhyay, Metall. Mater. Trans. B, 2016, vol. 47, pp. 1905-1915.

    Article  Google Scholar 

  35. V. Bojarevics and K. Pericleous, ISIJ international, 2003, vol. 43, pp. 890-898.

    Article  CAS  Google Scholar 

  36. A. R. Conn, K. Scheinberg, and L. N. Vicente: Introduction to derivative-free optimization. the Mathematical Programming Society and the Society for Industrial and Applied Mathematics, Philadelphia, 2009, p. 115.

Download references

Acknowledgments

The authors are very grateful to Dr. Y.H. Wu and Mr. S.J. Yang for their valuable discussions. They also thank Mr. M.X. Li for his help with the experiments. This work is financially supported by the National Natural Science Foundation of China (Grant Nos. 51327901, 51474175, 51522102 and 51734008) and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. P. Wang.

Additional information

Manuscript submitted January 15, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, X., Wang, H.P., Lü, P. et al. Optimized Electromagnetic Fields Levitate Bulk Metallic Materials. Metall Mater Trans B 49, 2252–2260 (2018). https://doi.org/10.1007/s11663-018-1333-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-018-1333-5

Keywords

Navigation