Skip to main content
Log in

Synergistic Effect of Nitrogen and Refractory Material on TiN Formation and Equiaxed Grain Structure of Ferritic Stainless Steel

  • Topical Collection: Metallurgical Processes Workshop for Young Scholars
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The effect of nitrogen content on the formation of an equiaxed solidification structure of Fe-16Cr steel was investigated. Moreover, two different kinds of refractory materials, i.e., alumina and magnesia, were employed to control the type of oxide inclusion. The characteristics of TiN(-oxide) inclusions were quantitatively analyzed in both molten steel and solidified samples. When the melting was carried out in the alumina refractory, the grain size continuously decreased with increasing nitrogen content. However, a minimum grain size was observed at a specific nitrogen content (approx. 150 ppm) when the steel was melted in the magnesia refractory. Most of the single TiN particles had a cuboidal shape and fine irregularly shaped particles were located along the grain boundary due to the microsegregation of Ti at the grain boundary during solidification. The type of TiN-oxide hybrid inclusion was strongly affected by the refractory material where Al2O3-TiN and MgAl2O4-TiN hybrid-type inclusions were obtained in the alumina and magnesia refractory experiments, respectively. The formation of oxide inclusions was well predicted by thermochemical computations and it was commonly found that oxide particles were initially formed, followed by the nucleation and growth of TiN. When the nitrogen content increased, the number density of TiN linearly increased in the alumina refractory experiments. However, the number of TiN exhibits a maximum at about [N] = 150 ppm, at which a minimum grain size was obtained in the magnesia refractory experiments. Therefore, the larger the number density of TiN, the smaller the primary grain size after solidification. The number density of TiN in the steel melted in the magnesia refractory was greater than that in the steel melted in the alumina refractory at given Ti and N contents, which was due to the lower planar lattice disregistry of MgAl2O4-TiN interface rather than that of Al2O3-TiN interface. When ∆TTiN (= difference between the TiN precipitation temperature and the liquidus of the steel) was 20 K to 40 K, the number density of effective TiN was maximized and thus, the grain size was minimized after solidification. Finally, although most of the TiN particles were smaller than 1 μm in the molten steel samples irrespective of the nitrogen content, TiN particles larger than 10 μm were observed in the solidified samples when the nitrogen content was greater than 150 ppm. The growth of TiN particles during melting and solidification was well predicted by the combinatorial simulation of the ‘Ostwald ripening model’ based on the Lifshitz–Slyozov–Wagner theory in conjunction with the ‘Diffusion controlled model’ using Ohnaka’s microsegregation equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. M. Brochu, T. Yokota, and S. Satoh: ISIJ Int., 1997, vol. 37, pp. 872–77.

    Article  Google Scholar 

  2. H.J. Shin, J.K. An, S.H. Park, and D.N. Lee: Acta Mater., 2003, vol. 51, pp. 4693–4706.

    Article  Google Scholar 

  3. S.H. Park, K.Y. Kim, Y.D. Lee, and C.G. Park: ISIJ Int., 2002, vol. 42, pp. 100–105.

    Article  Google Scholar 

  4. J.D. Hunt: Mater. Sci. Eng., 1984, vol. 65, pp. 75–83.

    Article  Google Scholar 

  5. M. Guo and H. Suito: ISIJ Int., 1999, vol. 39, pp. 722–29.

    Article  Google Scholar 

  6. J. Janis, K. Nakajima, A. Karasev, S. Jonsson, R. Inoue, and P.G. Jonsson: ISIJ Int., 2013, vol. 53, pp. 221–29.

    Article  Google Scholar 

  7. X. Chen, L. Qiu, H. Tang, X. Luo, L. Zuo, and Z. Wang: Mater. Process. Tech., 2015, vol. 222, pp. 224-33.

    Article  Google Scholar 

  8. J.S. Park and J.H. Park: Steel Res. Int., 2014, vol. 85, pp. 1303-09.

    Article  Google Scholar 

  9. A. Ito, H. Suito, and R.Inoue: ISIJ Int., 2012, vol. 52, pp. 1196–1205.

    Article  Google Scholar 

  10. J.H. Park: Calphad, 2011, vol. 35, pp. 455-62.

    Article  Google Scholar 

  11. J.C. Villafuerte, H.W. Kerr, and S.A. David: Mater. Sci. Eng. A, 1995, pp. 187-91.

    Article  Google Scholar 

  12. S. Ohkita and Y. Horii: ISIJ Int., 1995, vol. 35, pp. 1170-82.

    Article  Google Scholar 

  13. D.S. Sarama, A.V. Karasev and P.G. Jonsson : ISIJ Int., 2009, vol. 49, pp. 1063-74.

    Article  Google Scholar 

  14. D. Turnbull and B. Vonnegut: Ind. Eng. Chem., 1952, vol. 44, pp. 1292-97.

    Article  Google Scholar 

  15. B.L. Bramfitt: Metall. Trans., 1970, vol. 1, pp. 1987-95.

    Article  Google Scholar 

  16. J.S. Park, C.H. Lee, and J.H. Park: Metall. Mater. Trans. B, 2012, vol. 43B, pp. 1550-64.

    Article  Google Scholar 

  17. J.S. Park, D.H. Kim, and J.H. Park: J. Alloys Compd., 2017, vol. 695, pp. 476-81.

    Article  Google Scholar 

  18. K. Isobe: ISIJ Int., 2010, vol. 50, pp. 1972-80.

    Article  Google Scholar 

  19. E.T. Turkdogan: Physical Chemistry of High Temperature Technology, Academic press, New Nork, 1980, p. 81.

    Google Scholar 

  20. FactSage, www.factsage.com. Assessed Dec 2016

  21. A. Harada, G. Miyano, N. Maruoka, H. Shibata, and S. Kitamura: ISIJ Int., 2014, vol. 54, pp. 2230-38.

    Article  Google Scholar 

  22. R.T. DeHoff: Quantitative Microscopy, McGraw-Hill, New York, 1968, p. 128.

    Google Scholar 

  23. M. Ohno and K. Matsuura: ISIJ Int., 2009, vol. 49, pp. 1568-74.

    Article  Google Scholar 

  24. A. Hunter and M. Ferry: Metall. Mater. Trans. A, 2002, vol.33, pp. 1499-1507.

    Article  Google Scholar 

  25. C. Xuan: Wettability and Agglomeration Characteristics of Non-Metallic Inclusions (ISBN 978-91-7595-867-5), KTH Royal Institute of Technology, Sweden, 2016.

    Google Scholar 

  26. K. Sakata and H. Suito: Metall. Mater. Trans. B, 1999, vol. 30B, pp. 1053–63.

    Article  Google Scholar 

  27. Steelmaking Data Sourcebook, The Japan Society for Promotion of Science, The 19th Committee in Steelmaking, New York, Gordon and Breach Science Publishers, 1988, pp. 259-263.

    Google Scholar 

  28. J.J. Pak, J.T. Yoo, Y.S. Jeong, S.J. Tae, S.M. Seo, D.S. Kim and Y.D. Lee: ISIJ Int., 2005, vol. 45, pp. 23-29.

    Article  Google Scholar 

  29. J.J. Pak, Y.S. Jeong, I.K. Hong, W.Y. Cha, D.S. Kim, and Y.Y Lee: ISIJ Int., 2005, vol. 45, pp. 1106-11.

    Article  Google Scholar 

  30. W.Y. Kim, J.O. Jo, T.I. Chung, D.S. Kim, and J.J. Pak: ISIJ Int., 2007, vol. 47, pp. 1082-89.

    Article  Google Scholar 

  31. T. Koseki and H. Inoue: Tetsu-to-Hagane, 2001, vol. 65, pp. 644-51.

    Google Scholar 

  32. M. Suzuki, R. Yamaguchi, K. Murakami, and M. Nakada: ISIJ Int., 2001, vol. 41, pp. 247-56.

    Article  Google Scholar 

  33. H. Goto, K. I. Miyazawa, K. I. Yamaguchi, S. Ogibayashi, and K. Tanaka: ISIJ Int., 1994, vol. 34, pp. 414-19

    Article  Google Scholar 

  34. Y.N. Wang, J. Yang, Y.P. Bao: Metall. Mater. Trans. B, 2014, vol. 45B, pp. 2269-78.

    Article  Google Scholar 

  35. Y.N. Wang, J. Yang, X.L. Xin, R.Z. Wang, and L.Y. Xu: Metall. Mater. Trans. B, 2016, vol. 47B, pp. 1678-89.

    Google Scholar 

  36. I.M. Lifshitz and V.V. Slyozov: J.Phys. Chme. Solids, 1961, vol. 19, pp. 35-50.

    Article  Google Scholar 

  37. C. Wagner: Z. Electrochem, 1961, vol. 65, pp. 581-91.

    Google Scholar 

  38. I. Ohnaka: ISIJ Int., 1986, vol. 26, pp. 1045-51.

    Article  Google Scholar 

  39. H. Oikawa: Tetsu-to-Hagane, 1982, vol. 68, pp. 1489-96.

    Article  Google Scholar 

  40. Y. Saito and M. Enomoto: ISIJ Int., 1992, vol. 32, pp. 267-74.

    Article  Google Scholar 

  41. M.E. Bealy and B.G. Thomas: Metall. Mater. Trans. B, 1996 vol. 27B, pp. 689-93.

    Article  Google Scholar 

  42. J.O. Moon, C.H. Lee, S.H. Uhm, and J.B. Lee: Acta Mater., 2006, vol. 54, pp. 1053-61.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joo Hyun Park.

Additional information

Manuscript submitted June 14, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, M.H., Park, J.H. Synergistic Effect of Nitrogen and Refractory Material on TiN Formation and Equiaxed Grain Structure of Ferritic Stainless Steel. Metall Mater Trans B 49, 877–893 (2018). https://doi.org/10.1007/s11663-018-1218-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-018-1218-7

Keywords

Navigation