Skip to main content
Log in

Calcium Treatment for FeSi-killed Fe-13 Pct Cr Stainless Steel with Various Top Slag Compositions

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Calcium treatment of Fe-13 pct Cr stainless steel, with inclusion modification as its main purpose, was evaluated on a laboratory scale. The stability diagram of Ca-Al was obtained using the FactSage software and could be divided into three parts based on the [Al] content: the ultra-low-Al region, the low-Al region, and the medium-high-Al region. Each of these regions required different amounts of calcium for inclusion modification. The ferrosilicon deoxidation product could be modified into low melting temperature inclusions by a CaO-SiO2 top slag in the ultra-low-Al region ([Al] content less than 40 ppm). Calcium treatment was necessary to modify the ferrosilicon deoxidation product into low melting temperature inclusions in the low-Al region ([Al] content from 40 to 100 ppm) for the CaO-SiO2-Al2O3 top slag. Calcium addition has a “liquid window” where adding calcium can accelerate inclusion modification. Adding calcium for 15 and 30 minutes resulted in complete modification times of 45 and 60 minutes, respectively, which indicates that early calcium treatment can produce plastic inclusions sooner. The relationship between the steel and inclusion content was determined by fitting the experimental data in the low-Al region. An appropriate range of T.Ca/T.O (total calcium content/total oxygen content) for inclusion modification is 0.99 to 1.44.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Q. Wang, L. Wang, J. Zhai, J. Li and K. Chou: Metall. Mater. Trans. B, 2017, vol. 48(1), pp.564-72.

    Article  Google Scholar 

  2. K.Suzuki, S.Banya and M.Hino: ISIJ int., 2001,vol41,pp. 813-17.

    Article  Google Scholar 

  3. J.H.Park and Y.Kang. Metall. Mater. Trans. B, 2006, vol. 37B, pp.791-97.

    Article  Google Scholar 

  4. Y. Ren, L. Zhang, H. Ling, Y. Wang, D. Pan, Q. Ren and X. Wang: Metall. Mater. Trans. B, 2017, vol. 48(3), pp. 1433-38.

    Article  Google Scholar 

  5. G. Xu, Z. Jiang, Y. Li: Metall. Mater. Trans. B, 2016, vol. 47(4), pp. 2411-20.

    Article  Google Scholar 

  6. YT. Guo, SP. He, GJ Chen and Q. Wang: Metall. Mater. Trans. B, 2016, vol.47(4), pp.2549-57.

    Article  Google Scholar 

  7. J. Xu, F. Huang, X. Wang: Metall. Mater. Trans. B, 2016, vol.47(2),pp.1217-27.

    Article  Google Scholar 

  8. K. Taguchi, ON. Hideki, T. Usui, K. Marukawa, K. Katogi: ISIJ Int., 2005, vol.45(11), pp.1572-76.

    Article  Google Scholar 

  9. Y. Higuchi, M.Numata, S. Fukagawa, K Shinme:ISIJ Int., 1996, vol.36,pp.S151-S154.

    Article  Google Scholar 

  10. JH. Park, SB. Lee, SK. Dong: Metall. Mater. Trans. B, 2005, vol.36(1), pp.67-73.

    Article  Google Scholar 

  11. JMA Geldenhuis, PC Pistorius :Ironmaking Steelmaking, 2000, vol. 27(6), pp. 442-449.

    Article  Google Scholar 

  12. Y. Ren, Y. Zhang, L. Zhang: Ironmaking & Steelmaking, 2016, 44: 497-504

    Article  Google Scholar 

  13. L. Holappa, M. Hämäläinen, M. Liukkonen, M. Lind and K. Tshilombo: Ironmaking &Steelmaking, 2003,vol.30, pp.111-15.

    Article  Google Scholar 

  14. G. Yang and X. Wang: ISIJ Int., 2015, vol.55, pp.126-33.

    Article  Google Scholar 

  15. D. Zhao, H. Li, Y. Cui and J Yang: ISIJ International, 2016, vol.56(7),pp. 1181-87.

    Article  Google Scholar 

  16. Steelmaking Data Sourcebook: The Japan Society for the Promotion of Science. The 19th Committee on Steelmaking, Goldon Breach Science Pub, New York, 1988.

  17. MP. Howard and B. Debanshu: Metall. Mater. Trans. B, 1984, vol.15, pp. 547-62.

    Google Scholar 

  18. H. Itoh and M. Hino: Metall. Mater. Trans. B, 1997, vol. 28, pp. 953-56.

    Article  Google Scholar 

  19. H. Ohta and H. Suito: ISIJ int., 2003, vol. 43, pp. 1293-300.

    Article  Google Scholar 

  20. MH Zayan, OM Jamjoom, NA Razik: Oxide Metall., 1990, vol. 34, pp. 323–33.

    Article  Google Scholar 

  21. A. Löfgren. Internal report, Avesta Research Centre, Sweden. 1986.

    Google Scholar 

Download references

Acknowledgments

The authors would like to express their appreciation to the National Key Research and Development Program of China (2016YFB0300204) and the National Nature Science Foundation of China (51374020, 51774027, and 51734002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lijun Wang.

Additional information

Manuscript submitted May 17, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Wang, L., Zhai, J. et al. Calcium Treatment for FeSi-killed Fe-13 Pct Cr Stainless Steel with Various Top Slag Compositions. Metall Mater Trans B 49, 325–333 (2018). https://doi.org/10.1007/s11663-017-1156-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-017-1156-9

Keywords