Skip to main content
Log in

Experimental Study on Electrical Conductivity of MnO-CaO-SiO2 Slags at 1723 K to 1823 K (1450 °C to 1550 °C) and Various Oxygen Potentials

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The electrical conductivity of molten slag has many important and practical effects in modeling and operating the electric smelting furnace. In the present study, the electrical conductivities (total and electronic/ionic properties) of MnO-CaO-SiO2 slags were measured by a four-electrode method at different oxygen potentials and temperatures. Experimental results show that the effects of temperature on the total, electronic, and ionic conductivities obey the Arrhenius law, and all conductivities increase when increasing the temperature. The stepped potential chronoamperometry method was used to measure the electronic transference number, which is affected strongly by oxygen potential but is unaffected by temperature. The total electrical, electronic, and ionic conductivities present similar increasing trends when increasing the CO/CO2 ratio, which resulted from increasing Mn2+.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. G. Gruener, D. De Sousa Meneses, P. Odier, and J.P. Loup: J. Non-Cryst. Solids, 2001, vol. 281, pp. 117–24.

    Article  Google Scholar 

  2. M.T. Simnad, G. Derge, and I. George: Trans. AIME, 1954, vol. 6, pp. 1386–90.

    Google Scholar 

  3. J.O.M. Bockris, I.A. Kitchener, and S.A. Ignatowicz: Disc. Faraday Soc., 1948, vol. 4, pp. 265–81.

    Article  Google Scholar 

  4. J.O.M. Bockris, I.A. Kitchener, and S.A. Ignatowicz: Trans. Faraday Soc., 1952, vol. 48, pp. 75–91.

    Article  Google Scholar 

  5. L. Segers, A. Fontana, and R. Winand: Can. Metall. Q., 1983, vol. 22, pp. 429–35.

    Article  Google Scholar 

  6. A. Fontana, L. Segers, and R. Winand: Can. Metall. Q., 1980, vol. 20, pp. 209–14.

    Article  Google Scholar 

  7. J. W. Tomlinson and H. Inouye: J. Chem. Phys., 1952, vol. 20, p. 193.

    Article  Google Scholar 

  8. M.T. Simnad and G. Derge: J. Chem. Phys., 1953, vol. 21, pp. 933–34.

    Article  Google Scholar 

  9. H. Inouye, J.W. Tomlinson, and J. Chipman: Trans. Faraday Soc., 1953, vol. 49, pp. 796–801.

    Article  Google Scholar 

  10. N.A. Fried, K.G. Rhoads, and D.R. Sadoway: Electrochim. Acta, 2001, vol. 46, pp. 3351–58.

    Article  Google Scholar 

  11. G.M. Haarberg, K.S. Osen, R.J. Heus, and J.J. Egan: J. Electrochem. Soc., 1990, vol. 137, pp. 2777–81.

    Article  Google Scholar 

  12. J.H. Park: ISIJ Int., 2012, vol. 52, pp. 1627–36.

    Article  Google Scholar 

  13. D. Wang, A.J. Gmitter, and D.R. Sadoway: J. Electrochem. Soc., 2011, vol. 158, pp. E51–E54.

    Article  Google Scholar 

  14. D.R. Sadoway: J. Mater. Res., 1995, vol. 10, pp. 487–92.

    Article  Google Scholar 

  15. S.L. Schiefelbein, N.A. Fried, K.G. Rhoads, and D.R. Sadoway: Rev. Sci. Instrum., 1998, vol. 69, pp. 3308–13.

    Article  Google Scholar 

  16. J.H. Liu, G.H. Zhang, and K.C. Chou: J. Electrochem. Soc., 2015, vol. 162, pp. E314–E318.

    Article  Google Scholar 

  17. K. Narita, T. Onoye, T. Ishll, and K. Uemura: ISIJ Int., 1975, vol. 61, pp. 2943–51.

    Google Scholar 

  18. M. Barati and K.S. Coley: Metall. Mater. Trans. B, 2006, vol. 37B, pp. 41–49.

    Article  Google Scholar 

  19. L. Bobok, L. Bodnar, and J. Schmiedl: Hutnicke Listy, 1982, vol. 37, pp. 419–24.

    Google Scholar 

  20. S.N. Shin, S.A. Lyamkin, R.I. Gulyaeva, and V.M. Chumarev: Rasplavy, 1998, vol. 5, pp. 20–24.

    Google Scholar 

  21. J.H. Liu, G.H. Zhang, Y.D. Wu, and K.C. Chou: Can. Metall. Q., 2016, vol. 55, pp. 221–25.

    Article  Google Scholar 

  22. M. Kawahara, K.J. Morinaga, and T. Yanagase: Can. Metall. Q., 1983, vol. 22, pp. 143–47.

    Article  Google Scholar 

  23. J.H. Liu, G.H. Zhang, Y.D. Wu, and K.C. Chou: Metall. Mater. Trans. B, 2015, vol. 47B, pp. 798–803.

    Google Scholar 

  24. J.H. Liu, G.H. Zhang, and K.C. Chou: Can. Metall. Q., 2015, vol. 54, pp. 170–76.

    Article  Google Scholar 

  25. J.H. Liu, G.H. Zhang, and K.C. Chou: ISIJ Int., 2015, vol. 55, pp. 2325–31.

    Article  Google Scholar 

  26. W.R. Dickson and E.B. Dismukes: Trans. AIME, 1962, vol. 224, pp. 505–11.

    Google Scholar 

  27. M. Barati and K.S. Coley: Metall. Mater. Trans. B, 2006, vol. 37B, pp. 51–60.

    Article  Google Scholar 

Download references

Acknowledgment

This work was financially supported by the National Natural Science Foundation of China (Grant No. 51422405).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun-Hao Liu.

Additional information

Manuscript submitted March 28, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, JH., Zhang, GH. & Wang, Z. Experimental Study on Electrical Conductivity of MnO-CaO-SiO2 Slags at 1723 K to 1823 K (1450 °C to 1550 °C) and Various Oxygen Potentials. Metall Mater Trans B 48, 3359–3363 (2017). https://doi.org/10.1007/s11663-017-1072-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-017-1072-z

Keywords

Navigation