Skip to main content
Log in

Leaching of Bornite Produced from the Sulfurization of Chalcopyrite

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The pyrometallurgical route accounts for 80 pct of world metallic copper production, because chalcopyrite, the most abundant copper sulfide, is refractory to hydrometallurgical treatment. However, pyrometallurgical routes are quite restrictive as far as copper concentrates are concerned mainly owing to limits on the concentration of impurities, such as fluorine, chlorine, and arsenic that can be tolerated. Such concentrates require innovative processing solutions because their market value is greatly reduced. A potential alternative is the transformation of chalcopyrite to a sulfide amenable to leaching, such as chalcocite, covellite, or bornite, through treatment in either aqueous or gaseous environments. In this study, the sulfurization of a chalcopyrite concentrate containing 78 pct CuFeS2 in the presence of gaseous sulfur was investigated, with the goal of demonstrating its conversion to the leachable phases, i.e., bornite and covellite. The concentrate was reacted with elemental sulfur in a tubular furnace at temperatures ranging from 573 K to 723 K (300 °C to 450 °C), followed by atmospheric leaching in an Fe(III)-bearing solution. The mineral phases in the sample were quantified using the Rietveld method, and it was shown that at temperatures below 673 K (400 °C) chalcopyrite was converted to covellite (41 pct) and pyrite (34 pct), whereas at temperatures above these, the reaction products were bornite (45 pct) and pyrite (31 pct). Leaching tests [6 hours at 353 K (80 °C)] showed significantly higher copper extraction rates after sulfurization (90 pct) than those using the raw chalcopyrite concentrate (15 pct).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Watling, H.R.: Hydrometallurgy, 2013, vol. 140(0), pp. 163-180.

    Article  Google Scholar 

  2. 2. Devi, N.B., Madhuchhanda, M., Rao, K.S., Rath, P.C., and Paramguru, R.K.: Hydrometallurgy, 2000, vol. 57(1), pp. 57-76.

    Article  Google Scholar 

  3. 3. Watling, H.R.: Hydrometallurgy, 2006, vol. 84(1-2), pp. 81-108.

    Article  Google Scholar 

  4. 4. Nazari, G., Dixon, D.G., and Dreisinger, D.B.: Hydrometallurgy, 2011, vol. 105(3–4), pp. 251-258.

    Article  Google Scholar 

  5. 5. McDonald, R.G. and Muir, D.M.: Hydrometallurgy, 2007, vol. 86(3-4), pp. 191-205.

    Article  Google Scholar 

  6. 6. Sato, H., Nakazawa, H., and Kudo, Y.: Int. J. Miner. Process., 2000, vol. 59(1), pp. 17-24.

    Article  Google Scholar 

  7. 7. Yévenes, L.V., Miki, H., and Nicol, M.: Hydrometallurgy, 2010, vol. 103(1-4), pp. 80-85.

    Article  Google Scholar 

  8. 8. Yévenes, L.V., Nicol, M., and Miki, H.: Hydrometallurgy, 2010, vol. 103(1-4), pp. 108-113.

    Article  Google Scholar 

  9. 9. Koleini, S.M.J., Aghazadeh, V., and Sandström, Å.: Miner. Eng., 2011, vol. 24(5), pp. 381-386.

    Article  Google Scholar 

  10. 10. Gericke, M. and Pinches, A.: Miner. Eng., 1999, vol. 12(8), pp. 893-904.

    Article  Google Scholar 

  11. 11. Gómez, E., Ballester, A., González, F., and Blázquez, M.L.: Hydrometallurgy, 1999, vol. 52(9), pp. 349-366.

    Article  Google Scholar 

  12. 12. Amcoff, Ö.: Miner. Deposita, 1988, vol. 23, pp. 286-292.

    Article  Google Scholar 

  13. 13. Avraamides, J., Muir, D.M., and Parker, A.J.: Hydrometallurgy, 1980, vol. 5(4), pp. 325-336.

    Article  Google Scholar 

  14. 14. Dreisinger, D. and Abed, N.: Hydrometallurgy, 2002, vol. 66(1-3), pp. 37-57.

    Article  Google Scholar 

  15. 15. Parker, A.J., Muir, D.M., Giles, D.E., Alexander, R., O’Kane, J., and Avraamides, J.: Hydrometallurgy, 1975, vol. 1(2), pp. 169-181.

    Article  Google Scholar 

  16. L.E. Sargsyan, and A.M. Hovhannisyan: Metall. Min. Ind., 2010, vol. 2(3), pp. 225–29.

  17. Padilla, R., Rodriguez, M., and Ruiz, M.C.: Metall and Mater. Trans. B, 2003, vol. 34(1), pp. 15-23.

    Article  Google Scholar 

  18. 18. Padilla, R., Zambrano, P., and Ruiz, M.C.: Metall and Mater. Trans. B, 2003, vol. 34(2), pp. 153-159.

    Article  Google Scholar 

  19. 19. Cheng, C.Y. and Lawson, F.: Hydrometallurgy, 1991, vol. 27(3), pp. 269-284.

    Article  Google Scholar 

  20. A.C. Larson, and R.B. Von Dreele: General Structure Analysis System (GSAS). Los Alamos National Laboratory, 2001.

  21. 21. Toby, B.H.: J. Appl. Crystallogr., 2001, vol. 34, pp. 210 - 213.

    Article  Google Scholar 

  22. 22. Demopoulos, G.P. and Distin, P.A.: Hydrometallurgy, 1983, vol. 10(1), pp. 111-122.

    Article  Google Scholar 

  23. 23. Torres, C.M., Taboada, M.E., Graber, T.A., Herreros, O.O., Ghorbani, Y., and Watling, H.R.: Miner. Eng., 2015, vol. 71, pp. 139-145.

    Article  Google Scholar 

  24. 24. Carneiro, M.F.C. and Leão, V.A.: Hydrometallurgy, 2007, vol. 87(3-4), pp. 73-82.

    Article  Google Scholar 

  25. 25. Chmielewski, T. and Kaleta, R.: Physicochem. Probl. Miner. Process., 2011, vol. 46, pp. 21-34.

    Google Scholar 

  26. 26. Dutrizac, J.E., Macdonald, R.J.C., and Ingraham, T.R.: Metall. Trans. B, 1970, vol. 1, pp. 225-231.

    Google Scholar 

  27. Sullivan, J.D.: Chemistry of Leaching Bornite. U.S. Govt. print. off., 1931.

  28. 28. Pesic, B. and Olson, F.A.: Metall. Trans. B, 1983, vol. 14(4), pp. 577-588.

    Article  Google Scholar 

  29. 29. Acres, R.G., Harmer, S.L., and Beattie, D.A.: Int. J. Miner. Process., 2010, vol. 94(1-2), pp. 43-51.

    Article  Google Scholar 

  30. 30. Majuste, D., Ciminelli, V.S.T., Osseo-Asare, K., Dantas, M.S.S., and Magalhaes-Paniago, R.: Hydrometallurgy, 2012, vol. 111-112, pp. 114-123.

    Google Scholar 

  31. Burkin, A.R (2001) Chemical Hydrometallurgy: Theory and Principles. Vol. 1, World Scientific, New York

    Book  Google Scholar 

  32. Dutrizac, J.E., Chen, T.T., and Jambor, J.L.: Metall. Trans. B, 1985, vol. 16(4), pp. 679-693.

    Article  Google Scholar 

Download references

Acknowledgments

The financial support from the funding agencies FINEP, FAPEMIG, CNPq and CAPES is gratefully appreciated. The CAPES and CNPq scholarships to the authors are particularly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. C. Veloso.

Additional information

Manuscript submitted August 13, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Veloso, T.C., Paiva, P.R.P., Silva, C.A. et al. Leaching of Bornite Produced from the Sulfurization of Chalcopyrite. Metall Mater Trans B 47, 2005–2014 (2016). https://doi.org/10.1007/s11663-016-0621-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-016-0621-1

Keywords

Navigation