Skip to main content
Log in

Computational Modeling of Thermochemical Evolution of Aluminum Smelter Crust

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

In an aluminum reduction cell, crushed anode cover at room temperature is added onto the exposed bulk electrolyte surface around newly positioned anodes and is heated by high heat flux from this liquid electrolyte. Liquid electrolyte penetrates inside the porous anode cover. Solid cryolite and alumina crystallize from the liquid electrolyte due to the temperature gradient in the anode cover. A solidified crust forms at the bottom part of the anode cover during the heating up period. A thermochemical model which takes into account both the liquid electrolyte penetration and phase transformations has been developed to simulate the temperature evolution, chemical composition development, and liquid front penetration and content in the anode cover. The model is tested against experimental data obtained from industrial cells and laboratory experiments in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. G.V. Arkhipov, V.V. Pingin, and Y.A. Tretyakov: Light Metals, 2007, pp. 327–31.

  2. J. N. Bruggeman: 6th Australasian Aluminium Smelting Technology Conference and Workshop, 1998, pp. 167–90.

  3. X. Liu, M.P. Taylor, and S.F. George: Light Metals, 1992, pp. 489–94.

  4. Q. Zhang, M.P. Taylor, J.J. Chen, D. Cotton, T. Groutzo, and X. Yang: Light Metal, 2013, vol. 5, pp. 673–80.

    Google Scholar 

  5. L.N. Less: Light Metal, 1976, vol. 2, pp. 315–29.

    Google Scholar 

  6. R. Oedegard, S. Roenning, S. Rolseth, and J. Thonstad: Light Metal, 1985, vol. 3, pp. 695–709.

    Google Scholar 

  7. T.J. Johnston and N.E. Richards: Light Metal, 1983, vol. 2, pp. 623–39.

    Google Scholar 

  8. A.J. Banjab, G. Meintjes, J. Blasques, M. Sadiq, A. Kumar, M.M. Al-Jallaf, A. Zarouni, and H.A.M. Al: Light Metal, 2012, vol. 4, pp. 587–90.

    Google Scholar 

  9. N.P. Østbø: Norwegian University of Science and Technology, Norway, 2002.

  10. PERRY A FOSTER, Journal of the American Ceramic Society 1975, vol. 58, pp. 288-291.

    Article  Google Scholar 

  11. K. Grjotheim and C. Krohn: Aluminium Electrolysis: Fundamentals of the HallHeroult Process, International Publishers Service, Incorporated, 1982, p. 45.

  12. H.W. Kerr, J. Cisse, and G.F. Bolling: Acta Metall. 1974, vol. 22, pp. 677–86.

    Article  Google Scholar 

  13. YZ Chen, F Liu, GC Yang, N Liu, CL Yang and YH Zhou, Scr. Mater. 2007, vol. 57, pp. 779-782.

    Article  Google Scholar 

  14. Douglas F Craig and Jesse J Brown, Journal of the American Ceramic Society 1980, vol. 63, pp. 254-261.

    Article  Google Scholar 

  15. N.I. Anufrieva, Z.N. Balashova, L.S. Baranova, and V.N. Veretinskii: Tsvetn. Met. 1985, vol. 8, pp. 66–71.

    Google Scholar 

  16. David P Stinton and Jesse J Brown, Journal of the American Ceramic Society 1976, vol. 59, pp. 264-265.

    Article  Google Scholar 

  17. V Danielik and J Gabčová, Journal of Thermal Analysis and Calorimetry 2004, vol. 76, pp. 763-773.

    Article  Google Scholar 

  18. Roger T Cassidy and JESSE J BROWN, Journal of the American Ceramic Society 1979, vol. 62, pp. 547-551.

    Article  Google Scholar 

  19. M. Dupuis: Light Metals, TMS, Warrendale, 1998, p. 409.

    Google Scholar 

  20. J. Thonstad and A. Slattavik: Second Czech. Aluminum Symposium, 1972, pp 210–17.

  21. A. Solheim, S. Rolseth and E. Skybakmoen, Metall. Mater. Trans. B 1996, vol. 27, pp. 739-744.

    Article  Google Scholar 

  22. Donald A. Nield and Adrian Bejan: Convection in Porous Media. (Springer, New York, 2013).

    Book  Google Scholar 

  23. F.P. Incropera, T.L. Bergman, A.S. Lavine, and D.P. DeWitt: Fundamentals of Heat and Mass Transfer, Wiley, New York, 1990

    Google Scholar 

  24. W. Haupin: JOM, 1991, vol. 43, pp. 28–29.

    Article  Google Scholar 

  25. Yoshiyuki Endo, Da-Ren Chen and David YH Pui, Powder Technology 2002, vol. 124, pp. 119-126.

    Article  Google Scholar 

  26. A.W. Neumann, R. David, and Y. Zuo: Applied Surface Thermodynamics, CRC Press, Boca Raton, 2011.

    Google Scholar 

  27. M.W. Chase, Jr.: J. Phys. Chem., NIST-JANAF Thermochemical Tables, American Chemical Society, 1998.

  28. T Yokokawa and OJ Kleppa, The Journal of Physical Chemistry 1964, vol. 68, pp. 3246-3249.

    Article  Google Scholar 

  29. H Schaper and LL Van Reijen, Thermochimica Acta 1984, vol. 77, pp. 383-393.

    Article  Google Scholar 

  30. Phadungsak Rattanadecho, Journal of thermophysics and heat transfer 2004, vol. 18, pp. 87-93.

    Article  Google Scholar 

  31. Yuwen Zhang, Piyasak Damronglerd and Mo Yang, Heat Transfer Engineering 2010, vol. 31, pp. 555-563.

    Article  Google Scholar 

  32. O.C. Zienkiewicz and R.L. Taylor: The Finite Element Method, McGraw-Hill, London, 1977.

    Google Scholar 

  33. G. Dhatt and G. Touzot: Finite Element Method, John Wiley & Sons, New York, 2012.

    Book  Google Scholar 

  34. S.S. Quek and G.R. Liu: Finite Element Method: A Practical Course. Butterworth-Heinemann, Oxford, 2003.

    Google Scholar 

  35. T. Eggen, S. Rolseth, and K. Rye: Light Metals 1992, vol. 2, pp. 495–502.

    Google Scholar 

  36. Jeffrey M McKenzie, Clifford I Voss and Donald I Siegel, Advances in water resources 2007, vol. 30, pp. 966-983.

    Article  Google Scholar 

  37. K.A. Rye: University of Trondheim, NTH, Norway, 1992.

  38. K. Rye, J. Thonstad, and X.L. Liu: Light Metals, 1995, vol. 2, pp. 441–49.

    Google Scholar 

  39. HL Toor and JM Marchello, AIChE Journal 1958, vol. 4, pp. 97-101.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are deeply indebted to Dr. Ketil Rye for supplying the detailed measurement data from the synthetic crust experiments carried out at NTNU.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qinsong Zhang.

Additional information

Manuscript submitted July 28, 2014.

Appendices

Appendix

The equations listed in Section III include the temperature T L, the concentration Ø i , and the phase transformation rate m i . These equations are complicated, especially the conservation equations of energy. They can be more concrete and easy to be solved by finding out the mutual coupling relationships between these variables.

Equations [2], [3], and [4]give

$$ \rho_{\rm{L}} \left( {\frac{{\partial \varepsilon_{\rm{L}} }}{\partial t} + \frac{\partial u}{\partial x}} \right) = m_{1} + m_{2} $$
(30)

Equation [31] is got from energy equations [16] and [17].

Substituting Eqs. [7], [8], and [30] in Eq. [31] gives Eq. [32].

According to definition of specific sensible heat capacity C and latent heat L i of solid/liquid phase transformation, Eq. [33] is got (ignoring the difference between T L and T S).

$$ \varepsilon_{\rm{L}} \rho_{\rm{L}} \frac{{\partial H_{\rm{L}} }}{{\partial T_{\rm{L}} }}\frac{{\partial T_{\rm{L}} }}{\partial t} + u\rho_{\rm{L}} \frac{{\partial H_{\rm{L}} }}{{\partial T_{\rm{L}} }}\frac{{\partial T_{\rm{L}} }}{\partial t} + H_{\rm{L}} \rho_{\rm{L}} \left( {\frac{{\partial \varepsilon_{\rm{L}} }}{\partial t} + \frac{\partial u}{\partial x}} \right) + \left[ {\sum {\left( {\varepsilon_{{\rm{S}},i} \rho_{{\rm{S}},i} \frac{{\partial H_{{\rm{S}},i} }}{{\partial T_{\rm{S}} }}} \right)} } \right]\frac{{\partial T_{\rm{S}} }}{\partial t} + \sum {\left( {\rho_{{\rm{S}},i} H_{{\rm{S}},i} \frac{{\partial \varepsilon_{{_{{\rm{S}},i} }} }}{\partial t}} \right)} = \frac{\partial }{\partial x}\left( {k_{\rm{eff}} \frac{{\partial T_{\rm{L}} }}{\partial x}} \right) + q_{\gamma \alpha } ,\quad x \le h_{\rm{e}} $$
(31)
$$ \varepsilon_{\rm{L}} \rho_{\rm{L}} \frac{{\partial H_{\rm{L}} }}{{\partial T_{\rm{L}} }}\frac{{\partial T_{\rm{L}} }}{\partial t} + u\rho_{\rm{L}} \frac{{\partial H_{\rm{L}} }}{{\partial T_{\rm{L}} }}\frac{{\partial T_{\rm{L}} }}{\partial x} + \left[ {\sum {\left( {\varepsilon_{{\rm{S}},i} \rho_{{\rm{S}},i} \frac{{\partial H_{{\rm{S}},i} }}{{\partial T_{\rm{S}} }}} \right)} } \right]\frac{{\partial T_{\rm{S}} }}{\partial t} + H_{\rm{L}} m - \sum {(H_{{\rm{S}},i} m_{i} } ) = \frac{\partial }{\partial x}\left( {k_{\rm{eff}} \frac{{\partial T_{\rm{L}} }}{\partial x}} \right),\quad x \le h_{\rm{e}} $$
(32)
$$ \varepsilon_{\rm{L}} \rho_{\rm{L}} C_{\rm{L}} \frac{{\partial T_{\rm{L}} }}{\partial t} + u\rho_{\rm{L}} C_{\rm{L}} \frac{{\partial T_{\rm{L}} }}{\partial x} + \sum {(\varepsilon_{{\rm{S}},i} \rho_{{\rm{S}},i} C_{{\rm{S}},i} )} \frac{{\partial T_{\rm{L}} }}{\partial t} + \sum {(L_{i} m_{i} } ) = \frac{\partial }{\partial x}\left( {k_{\rm{eff}} \frac{{\partial T_{\rm{L}} }}{\partial x}} \right) + q_{\gamma \alpha } ,\quad x \le h_{\rm{e}} $$
(33)

According to the mechanism of mass transfer between solid/liquid phases[39]

$$ \phi_{i} = \phi_{i}^{*} - K_{i} m_{i}, $$
(34)

where ϕ * i is saturation concentration, K i is a coefficient between concentration difference and phase transformation rate, and K i  < 10−6 in the case of high surface area S. Equations [35] and [36] are got by substituting Eqs. [30] and [34] in the Eqs. [2] and [3] (In the case of the porous crust with fine pore size, the effect of mass diffusion D in the liquid bath on the model result is likely to be insignificant. Thus, the mass diffusion might be neglected in the application of the model in this case)

$$ (1 - \phi_{1}^{*} + m_{1} K_{1} )m_{1} - (\phi_{1}^{*} - m_{1} K_{1} )m_{2} + K_{1} \rho_{\rm{L}} \left( {\varepsilon_{\rm{L}} \frac{{\partial m_{1} }}{\partial t} + u\frac{{\partial m_{1} }}{\partial x}} \right) = \rho_{\rm{L}} \left( {\varepsilon_{\rm{L}} \frac{{\partial \phi_{1}^{*} }}{\partial t} + u\frac{{\partial \phi_{1}^{*} }}{\partial x}} \right) $$
(35)
$$ (1 - \phi_{2}^{*} + m_{2} K_{2} )m_{2} - (\phi_{2}^{*} - m_{2} K_{2} )m_{1} + K_{2} \rho_{\rm{L}} \left( {\varepsilon_{\rm{L}} \frac{{\partial m_{2} }}{\partial t} + u\frac{{\partial m_{2} }}{\partial x}} \right) = \rho_{\rm{L}} \left( {\varepsilon_{\rm{L}} \frac{{\partial \phi_{2}^{*} }}{\partial t} + u\frac{{\partial \phi_{2}^{*} }}{\partial x}} \right) $$
(36)

The items with K i are negligible in Eqs. [35] and [36], thus

$$ (1 - \phi_{1}^{*} )m_{1} - \phi_{1}^{*} m_{2} = \rho_{\rm{L}} \left( {\varepsilon_{\rm{L}} \frac{{\partial \phi_{1}^{*} }}{{\partial T_{\rm{M}} }}\frac{{\partial T_{\rm{M}} }}{\partial t} + u\frac{{\partial \phi_{1}^{*} }}{{\partial T_{\rm{M}} }}\frac{{\partial T_{\rm{M}} }}{\partial x}} \right) $$
(37)
$$ - \phi_{2}^{*} m_{1} + (1 - \phi_{2}^{*} )m_{2} = \rho_{\rm{L}} \left( {\varepsilon_{\rm{L}} \frac{{\partial \phi_{2}^{*} }}{{\partial T_{\rm{M}} }}\frac{{\partial T_{\rm{M}} }}{\partial t} + u\frac{{\partial \phi_{2}^{*} }}{{\partial T_{\rm{M}} }}\frac{{\partial T_{\rm{M}} }}{\partial x}} \right) $$
(38)

According to the phase diagram, the saturation concentration ϕ * i is function of the equilibrium temperature T M. For a certain temperature T M, the saturation concentration ϕ * i is determined.

The solution for above Eqs. [37] and [38] is

$$ \left[ {\begin{array}{*{20}c} {m_{1} } \\ {m_{2} } \\ \end{array} } \right] = \left[ {\begin{array}{*{20}c} {1 - \phi_{1}^{*} } & { - \phi_{1}^{*} } \\ { - \phi_{2}^{*} } & {1 - \phi_{2}^{*} } \\ \end{array} } \right]^{ - 1} \left( {\left[ {\begin{array}{*{20}c} {\frac{{\partial \phi_{1}^{*} }}{{\partial T_{\rm{M}} }}} & {\frac{{\partial \phi_{1}^{*} }}{{\partial T_{\rm{M}} }}} \\ {\frac{{\partial \phi_{2}^{*} }}{{\partial T_{\rm{M}} }}} & {\frac{{\partial \phi_{2}^{*} }}{{\partial T_{\rm{M}} }}} \\ \end{array} } \right]\left[ {\begin{array}{*{20}c} {\rho_{\rm{L}} \varepsilon_{\rm{L}} \frac{{\partial T_{\rm{M}} }}{\partial t}} \\ {\rho_{\rm{L}} u\frac{{\partial T_{\rm{M}} }}{\partial x}} \\ \end{array} } \right]} \right) = [F]\left[ {\begin{array}{*{20}c} {\rho_{\rm{L}} \varepsilon_{\rm{L}} \frac{{\partial T_{\rm{M}} }}{\partial t}} \\ {\rho_{\rm{L}} u\frac{{\partial T_{\rm{M}} }}{\partial x}} \\ \end{array} } \right] $$
(39)
$$ [F] = \left[ {\begin{array}{*{20}c} {1 - \phi_{1}^{*} } & { - \phi_{1}^{*} } \\ { - \phi_{2}^{*} } & {1 - \phi_{2}^{*} } \\ \end{array} } \right]^{ - 1} \left[ {\begin{array}{*{20}c} {\frac{{\partial \phi_{1}^{*} }}{{\partial T_{\rm{M}} }}} & {\frac{{\partial \phi_{1}^{*} }}{{\partial T_{\rm{M}} }}} \\ {\frac{{\partial \phi_{2}^{*} }}{{\partial T_{\rm{M}} }}} & {\frac{{\partial \phi_{2}^{*} }}{{\partial T_{\rm{M}} }}} \\ \end{array} } \right] = \frac{{\left[ {\begin{array}{*{20}c} {1 - \phi_{2}^{*} } & {\phi_{1}^{*} } \\ {\phi_{2}^{*} } & {1 - \phi_{1}^{*} } \\ \end{array} } \right]}}{{1 - \phi_{1}^{*} - \phi_{2}^{*} }}\left[ {\begin{array}{*{20}c} {\frac{{\partial \phi_{1}^{*} }}{{\partial T_{\rm{M}} }}} & {\frac{{\partial \phi_{1}^{*} }}{{\partial T_{\rm{M}} }}} \\ {\frac{{\partial \phi_{2}^{*} }}{{\partial T_{\rm{M}} }}} & {\frac{{\partial \phi_{2}^{*} }}{{\partial T_{\rm{M}} }}} \\ \end{array} } \right] $$
(40)

Define F L as

$$ F_{\rm{L}} = [F]_{11} L_{1} + [F]_{21} L_{2} = [F]_{12} L_{1} + [F]_{22} L_{2} $$
(41)

By assuming \( T_{\rm{L}} \approx T_{\rm{M}} \), giving

$$ L_{1} m_{1} + L_{2} m_{2} = F_{\rm{L}} \rho_{\rm{L}} \left( {\varepsilon_{\rm{L}} \frac{{\partial T_{\rm{L}} }}{\partial t} + u\frac{{\partial T_{\rm{L}} }}{\partial x}} \right) $$
(42)

Define effective heat capacity C E as

$$ C_{\rm{E}} = C_{\rm{L}} + F_{\rm{L}} $$
(43)

Substituting C E, the energy equations are integrated as

$$ C_{\rm{E}} \rho_{\rm{L}} \varepsilon_{\rm{L}} \frac{{\partial T_{\rm{L}} }}{\partial t} + C_{\rm{E}} \rho_{\rm{L}} u\frac{{\partial T_{\rm{L}} }}{\partial x} + \sum {(\varepsilon_{{\rm{S}},i} \rho_{{\rm{S}},i} C_{{\rm{S}},i} )} \frac{{\partial T_{\rm{L}} }}{\partial t} = \frac{\partial }{\partial x}\left( {k_{\rm{eff}} \frac{{\partial T_{\rm{L}} }}{\partial x}} \right) + q_{\gamma \alpha } $$
(44)

Because the coefficient C E is determined by the temperature and the eutectic curve, the temperature and the concentration are strongly coupled through Eq. [44].

Nomenclature

Symbol

Definition

Value

Variables, properties, and physical constants used in Model

 C

Specific heat capacity (J/kg K)

 

 Liquid electrolyte

1880

 Solid cryolite

1100 to 1660

 Solid alumina

900 to 1260

 C E

Effective specific heat capacity (J/kg K)

2 × 103 to 104

 D

Diffusion coefficient (m2/s)

10−8

 e

Emissivity (m/s2)

0.4

 g

Gravity acceleration (m/s2)

9.8

 h C

Convective heat transfer coefficient (W/m2 K)

5

 h f

Convective heat transfer coefficient (W/m2 K)

500

 R

Effective capillary radius (m)

R = 2εL/S

 k eff

Effective thermal conductivity (W/mK)

 

 Alumina-based crust

0.4 to 0.8

 Alumina loose cover

0.1 to 0.3

 Crushed bath crust

1.0 to 1.5

 Crushed bath loose cover

0.2 to 0.8

 K R

Reaction rate constant (L/min)

0.05

 L

Latent heat (J/kg)

 

 Eutectic reaction

7.56 × 105

 Chiolite melting

5.12 × 105

 S

Surface area per unit volume (m2/m3)

 

 Sandy alumina

7.7 × 107

 ρ

True density (kg/m3)

 

 Liquid electrolyte

2100

 Solid cryolite

2970

 Solid alumina

3950

 ε

Volume fraction

 

 Initial porosity of sandy alumina

0.7

 µ

Viscosity of the liquid electrolyte (mPa s)

2.3

 σ

Stefan-Boltzmann constant (kg/s3 k4)

5.67 × 10−8

 γL

Surface tension of the liquid electrolyte (N m−1)

0.1

 θ

Contact angle between the liquid electrolyte and the solid

cosθ ≈ 1

Symbol

Definition

Other nomenclature

 h

Height position in the anode cover/crust (m)

 h R

Effective radiative heat transfer coefficient (W/m2K)

 h V

Volumetric convective heat transfer coefficient (W/m3K)

 H

Enthalpy (J)

 J

Diffusion flux (kg/m2s)

 K h

Hydraulic conductivity(m/s)

 m

Phase transformation rate (kg/m3s)

 t

Time (s)

 T

Temperature (°C)

 p

Pressure (Pa)

 Q

Heat flux (w/m2)

 q

Volumetric heat generation rate (w/m3)

 q γα

Volumetric heat generation rate (w/m3)

 u

Superficial fluid velocity (m/s)

 x

Coordinate (m)

 Ø

Weight fraction in the liquid electrolyte

Subscript

Definition

1,2,3,…8

Alumina, cryolite, AlF3, chiolite, LiF, KF, MgF2, and CaF2

A

Air

B

Bulk electrolyte

C

Loose cover

e

Liquid electrolyte front (eutactic reaction)

L

Liquid electrolyte

M

Interface between the liquid electrolyte and solid phase

p

Chiolite melting

S

Solid phase

γ

Transition alumina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Q., Taylor, M.P. & Chen, J.J.J. Computational Modeling of Thermochemical Evolution of Aluminum Smelter Crust. Metall Mater Trans B 46, 1520–1534 (2015). https://doi.org/10.1007/s11663-015-0304-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-015-0304-3

Keywords

Navigation