Skip to main content
Log in

Macrosegregation During Electroslag Remelting of Alloy 625

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

An Erratum to this article was published on 18 March 2015

Abstract

A numerical model of electroslag remelting is used to examine the effects of ingot diameter, mushy zone permeability, process current levels, and initial composition on macrosegregation in alloy 625. Composition variations are made within the standard ranges for alloy 625 to alter the solutal contribution to buoyancy-driven flows and macrosegregation. Average steady-state macrosegregation and radial composition distributions are compared to identify processing conditions that best ameliorate this defect. Also, a novel approach to evaluate macrosegregation of an ingot is used, comparing the composition distribution to the alloy specification. As expected, increasing the ingot size from 51 cm (20 in.) to 76 cm (30 in.) increases the overall segregation, especially at the centerline. The segregation tends to decrease with decreasing interdendritic liquid velocity and sump depth. Processing ingots with a low current and an initial composition in the low end of the specification range is the best choice to reduce macrosegregation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. G Hoyle: Electroslag Processes, Elsevier Science Publishing Co. INC, New York, NY, 1983.

    Google Scholar 

  2. A.D. Patel and K.M. Kelkar: in MCWASP - XII, S.L. Cockcroft and D.M. Maijer, eds., TMS, 2009, pp. 69-76.

  3. S. Vishwanathan, A.D. Patel, K.M. Kelkar, D.G. Evans, D.K. Melgaard, R.S. Minisandra, and S.V. Patankar: in MCWASP - XI, A. Gandin and M. Bellet, eds., TMS, 2006, pp. 977-84.

  4. S. Vishwanathan, D.K. Melgaard, A.D. Patel, and D.G. Evans: Proc. 2005 Int. Symp. Liq. Met. Process. Cast., P.D. Lee, ed., TMS, Santa Fe, NM, 2005, pp. 145-54.

  5. K.M. Kelkar, S.V. Patankar, S.K. Srivatsa, R.S. Minisandram, D.G. Evans, J.J. DeBarbadillo, R.H. Smith, R.C. Helmink, A. Mitchel, and H.A. Sizek: Liq. Met. Process. Cast. Conf., M.J.M. Krane, A. Jardy, R.L. Williamson, and J.J. Beaman, eds., Wiley, Austin, Texas, 2013, pp. 3-12.

  6. V. Weber, A. Jardy, B. Dussoubs, D. Ablitzer, S. Rybéron, V. Schmitt, S. Hans, and H. Poisson: Metall. Mater. Trans. B, 2009, vol. 40B, pp. 271-80.

    Article  Google Scholar 

  7. V. Weber, A. Jardy, B. Dussoubs, D. Ablitzer, S. Rybéron, V. Schmitt, and S. Hans: in Liq. Met. Process. Cast., Nancy, France, 2007, pp. 83-88.

  8. A. Kharicha, W. Schützenhöfer, A. Ludwig, and G. Reiter: Mater. Sci. Forum, 2010, vol. 649, pp. 229-36.

    Article  Google Scholar 

  9. M.J.M. Krane, S. Cefalu, K. VanEvery, and D. Zagrebelnyy: in MCWASP - XI, A. Gandin and M. Bellet, eds., TMS, 2006, pp. 969-76.

  10. J. Yanke: Ph.D. Dissertation, School of Materials Engineering, Purdue University, 2013.

  11. J. Yanke, K. Fezi, R.W. Trice, and M.J.M. Krane: Numer. Heat Transf. Part A Appl., 2014 (in press).

  12. M.J.M. Krane, M. Fahrmann, J. Yanke, E.E. Escobar de Obaldia, K. Fezi, and J. Busch: Proc. 2011 Int. Symp. Liq. Met. Process. Cast., M.J.M. Krane et al., eds., SF2M, Nancy, France, 2011, pp. 65-72.

  13. J. Yanke and M.J.M. Krane: Proc. 2013 Int. Symp. Liq. Met. Process. Cast., TMS, Austin, Texas, 2013.

  14. S.V. Patankar: Numerical Heat Transfer and Fluid Flow, Hemisphere Publishing, Washington, DC, 1980.

    Google Scholar 

  15. W.J. Rider and D. Kothe: J. Comput. Phys., 1998, vol. 141, pp. 121-52.

    Article  Google Scholar 

  16. S.H. Garrioch: Ph.D. Dissertation, McGill University, 2000.

  17. W. Yang, W. Chen, K. Chang, S. Mannan, and J. DeBarbadillo: in Superalloys 2000, T.M. Pollock, R.D. Kissinger, R.R. Bowman, K.A. Green, M. McLean, S. Olson, and J.J. Schirra, eds., TMS, 2000, pp. 75-84.

  18. M.C. Schneider and C. Beckermann: Int. J. Heat Mass Transf., 1995, vol. 38, pp. 3455-73.

    Article  Google Scholar 

  19. Special Metals Corporation: INCONEL Alloy 625, 2006, pp. 1-20.

    Google Scholar 

  20. T Iida and R Guthrie: The Physical Properties of Liquid Metals, Clarendon Press, Oxford, 1988.

    Google Scholar 

  21. H Jones: Rapid Solidification of Metals and Alloys, Institution of Metallurgists, London, 1982.

    Google Scholar 

  22. H. Holzgruber and W. Holzgruber: Proc. 2003 Int. Symp. Liq. Met. Process. Cast., P.D. Lee, A. Mitchell, A. Jardy, and J.P. Bellot, ed., Nancy, France, 2003, pp. 121-29.

Download references

Acknowledgments

This research was funded by a gift from PCC and by a grant from the National Science Foundation (CMMI-0900624), the latter being a GOALI award in partnership with Special Metals Corporation (a PCC subsidiary) and Haynes International.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyle Fezi.

Additional information

Manuscript submitted October 20, 2013.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fezi, K., Yanke, J. & Krane, M.J.M. Macrosegregation During Electroslag Remelting of Alloy 625. Metall Mater Trans B 46, 766–779 (2015). https://doi.org/10.1007/s11663-014-0254-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-014-0254-1

Keywords

Navigation