Skip to main content
Log in

Further Experimental Investigation of Freeze-Lining/Bath Interface at Steady-State Conditions

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

In design of the freeze-lining deposits in high-temperature reaction systems, it has been widely assumed that the interface temperature between the deposit and bath at steady-state conditions, that is, when the deposit interface velocity is zero, is the liquidus of the bulk bath material. Current work provides conclusive evidence that the interface temperature can be lower than that of the bulk liquidus. The observations are consistent with a mechanism involving the nucleation and growth of solids on detached crystals in a subliquidus layer as this fluid material moves toward the stagnant deposit interface and the dissolution of these detached crystals as they are transported away from the interface by turbulent eddies. The temperature and position of the stable deposit/liquid interface are determined by the balance between the extent of crystallization on the detached crystals and mass transfer across the subliquidus layer from the bulk bath. A conceptual framework is developed to analyze the factors influencing the steady-state deposit/interface temperature and deposit thickness in chemical systems operating in a positive temperature gradient. The framework can be used to explain the experimental observations in a diverse range of chemical systems and conditions, including high-temperature melts and aqueous solutions, and to explain why the interface temperature under these conditions can be between T liquidus and T solidus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M.C. Flemings, Solidification Processing, McGraw-Hill, New York, NY, 1974.

    Google Scholar 

  2. W. Kurz and D.J. Fisher, Fundamentals of Solidification third ed., Trans Tech Publications, Aedermannsdorf, Switzerland, 1989.

    Google Scholar 

  3. T.R. Bott: Exp. Therm. Fluid. Sci., 1997, vol. 14(4), pp. 356-60.

    Article  Google Scholar 

  4. A.P. Watkinson and D.I. Wilson: Exp. Therm. Fluid. Sci., 1997, vol. 14(4), pp. 361-74.

    Article  Google Scholar 

  5. B. Bansal, X.D. Chen, and H. Müller-Steinhagen: Chem. Eng. Process Process Intensification, 2008, vol. 478, pp. 1201–10.

    Article  Google Scholar 

  6. D. Hasson, Understanding Heat Exchanger Fouling and Its Mitigation. Begell House, New York, 1999.

    Google Scholar 

  7. F. Guevara and G. Irons: Metall. Mater. Trans. B., 2011, vol. 42B, pp. 664-76.

    Article  Google Scholar 

  8. F. Guevara and G. Irons: Metall. Mater. Trans. B., 2011, vol. 42B, pp. 652-63.

    Article  Google Scholar 

  9. A. Fallah-Mehrjardi, P.C. Hayes, and E. Jak: Metall. Mater. Trans. B., 2013, vol. 44B, pp. 534-48.

    Article  Google Scholar 

  10. A. Fallah-Mehrjardi, P.C. Hayes, and E. Jak: Metall. Mater. Trans. B., 2013, vol. 44B, pp. 549–60.

    Article  Google Scholar 

  11. A. Fallah-Mehrjardi, P.C. Hayes, and E. Jak: Metall. Mater. Trans. B, 2013, vol. 44B, pp. 1337-51.

    Article  Google Scholar 

  12. A. Fallah-Mehrjardi, J. Jansson, P. Taskinen, P.C. Hayes, and E. Jak: Metall. Mater. Trans. B, 2014, vol. 45B, pp. 864-74.

    Article  Google Scholar 

  13. A. Fallah-Mehrjardi, P.C. Hayes, S. Vervynckt, and E. Jak: Metall. Mater. Trans. B., 2014, vol. 45B, pp. 850-63.

    Article  Google Scholar 

  14. A. Fallah-Mehrjardi, P.C. Hayes, and E. Jak: Metall. Mater. Trans. B, 2014, DOI:10.1007/s11663-014-0078-z.

  15. P.C. Pistorius: JSAIMM, 2003, vol. 103(8), pp. 509-14.

    Google Scholar 

  16. P.C. Pistorius: JSAIMM, 2004, vol. 104(7), pp. 417-22.

    Google Scholar 

  17. J.H. Zietsman and C. Pistorius: Minerals Engineering, 2005, vol. 19(3), pp. 262-79.

    Article  Google Scholar 

  18. D.G.C. Robertson and S. Kang: Proc. Int. Conf. Fluid Flow Phenomena in Minerals Processing, TMS, Warrendale, PA, 1999, pp. 157–68.

  19. K. Verscheure, M. Van Camp, B. Blanpain, P. Wollants, P. Hayes, and E. Jak: Metall. Mater. Trans. B., 2007, vol. 38B, pp. 13-20.

    Article  Google Scholar 

  20. K. Verscheure, F. Verhaeghe, E. Boydens, M. Van Camp, B. Blanpain, and P. Wollants: Metall. Mater. Trans. B., 2006, vol. 37B, pp. 929-40.

    Article  Google Scholar 

  21. K. Verscheure, A.K. Kyllo, A. Filzwieser, B. Blanpain, and P. Wollants: Proc. Sohn international symposium. TMS, Warrendale, PA, 2006, pp. 139–54.

  22. H. Joubert: Int. Conf. on Molten Slags and Fluxes, Stockholm-Helsinki, 2000.

  23. M. Campforts, B. Blanpain, and P. Wollants: Metall. Mater. Trans. B., 2009, vol. 40B, pp. 643-55.

    Article  Google Scholar 

  24. M. Campforts, E. Jak, B. Blanpain, and P. Wollants: Metall. Mater. Trans. B., 2009, vol. 40B, pp. 619-31.

    Article  Google Scholar 

  25. M. Campforts, E. Jak, B. Blanpain, and P. Wollants: Metall. Mater. Trans. B., 2009, vol. 40B, pp. 632-42.

    Article  Google Scholar 

  26. M. Campforts, K. Verscheure, E. Boydens, T. Van Rompaey, B. Blanpain, and P. Wollants: Metall. Mater. Trans. B., 2008, vol. 39B, pp. 408-17.

    Article  Google Scholar 

  27. M. Campforts, K. Verscheure, T. Van Rompaey, E. Boydens, B. Blanpain, and P. Wollants: Metall. Mater. Trans. B., 2007, vol. 38B, pp. 841-51.

    Article  Google Scholar 

  28. P. Taskinen, M. Kaskiala, P. Hietanen, K. Miettinen, and A. Forsström: Trans. Inst. Min. Metall. C, 2011, vol. 120, pp. 147-55.

    Google Scholar 

  29. P.V. Danckwerts: Ind Eng Chem., 1951, vol. 43, pp. 1460.

    Article  Google Scholar 

  30. W.F. Gale and T.C. Totemeier, eds. Smithells Metals Reference Book, 9th ed., Elsevier Ltd., New York, 2004.

  31. W. Kurz, C. Bezençon, and M. Gäumann: Sci. Techn. Advanced Materials, 2000, vol. 2, pp. 185-91.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Australian Research Council Linkage program, Rio Tinto Kennecott Utah Copper, Corp., Xstrata Technology, Xstrata Copper, BHP Billiton Olympic Dam Operation and Outotec Finland Oy for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ata Fallah-Mehrjardi.

Additional information

Manuscript submitted May 6, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fallah-Mehrjardi, A., Hayes, P. & Jak, E. Further Experimental Investigation of Freeze-Lining/Bath Interface at Steady-State Conditions. Metall Mater Trans B 45, 2040–2049 (2014). https://doi.org/10.1007/s11663-014-0149-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-014-0149-1

Keywords

Navigation