Skip to main content
Log in

Magnetite Particle Size Distribution and Pellet Oxidation

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Oxidation of magnetite pellets is commonly performed to prepare strong pellets for ironmaking. This article presents a contribution to quantitative understanding of fundamental pellet oxidation kinetics, based on measured oxidation kinetics of magnetite particles and pellets. The commonly observed “plateau” oxidation behavior is confirmed to be consistent with the effect of very large differences in magnetite particle sizes in the concentrate from which pellets are produced. The magnetite particles range in size from less than a micron to several tens of a microns; changing the size distribution by inert sintering of pellets decreases both the plateau level of oxidation and the specific surface area, in ways that are compatible with an assumed Rosin-Rammler magnetite particle size distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. H.J. Cho and P.C. Pistorius: AISTech 2011 Proceedings Volume I, Association for Iron and Steel Technology, Warrendale, PA, 2011, pp. 507-14.

  2. S.R.B. Cooke and T.E. Ban: Mining Eng., 1952, vol. 6, pp. 1052-58.

    Google Scholar 

  3. H. Kokal: MSc Thesis, University of Minnesota, Minneapolis, 1970.

  4. J.D. Zetterstrom: Bureau of Mines Report of Investigations 4728, United States Department of the Interior, Washington, DC, 1950.

    Google Scholar 

  5. M. Tang, H.J. Cho, and P.C. Pistorius: Metall. Mater. Trans. B, in press.

  6. S.P.E. Forsmo, S.-E. Forsmo, P.-O. Samskog and B.M.T. Björkman: Powder Technol., 2008, vol. 183, pp. 247-59.

    Article  Google Scholar 

  7. B.E. Monsen, S.E. Olsen and L. Kolbeinsen: Scand. J. Metall., 1994, vol. 23, pp. 74-80.

    Google Scholar 

  8. V. Niiniskorpi: Academic dissertation, Åbo Akademi, Åbo, Laboratory of Inorganic Chemistry, 2004, pp 54–55.

  9. D. Papanastassiou and G. Bitsianes: Metall. Trans., 1973, vol. 4, pp. 487-96.

    Article  Google Scholar 

  10. K. Meyer, H. Rausch, and M. Ottow: Stahl und Eisen, 1967, vol. 87, pp. 654-60.

    Google Scholar 

  11. P. Rosin and E. Rammler: J. Inst. Fuel, 1933, vol. 7, pp. 29-36.

    Google Scholar 

  12. K.M. Djamarani and I.M. Clark: Powder Technol., vol. 93, 1997, pp. 101-8.

    Article  Google Scholar 

  13. H.P. Klug and L.E. Alexander: X-Ray Diffraction Procedures for Polycrystalline and Amorphous Materials, 2nd ed., Wiley, New York, NY, 1974, pp.493-94.

    Google Scholar 

  14. H.J. Cho and P.C. Pistorius: AISTech 2012 Proceedings, Association for Iron and Steel Technology, Warrendale, PA, 2012, pp. 503-11.

  15. J. Païdassi: Acta Metall., 1958, vol. 6, pp. 219-21.

    Article  Google Scholar 

  16. G.J. Yurek, J.P. Hirth, and R.A. Rapp: Oxid. Met., 1974, vol. 8, pp. 265-81.

    Article  Google Scholar 

Download references

Acknowledgments

Support of this project by the members of the Center for Iron and Steelmaking Research is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petrus Christiaan Pistorius.

Additional information

Manuscript submitted December 13, 2013.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cho, H.J., Tang, M. & Pistorius, P.C. Magnetite Particle Size Distribution and Pellet Oxidation. Metall Mater Trans B 45, 1213–1220 (2014). https://doi.org/10.1007/s11663-014-0104-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-014-0104-1

Keywords

Navigation