Skip to main content
Log in

Manufacturing of Aluminum Matrix Composites Reinforced with Iron Oxide (Fe3O4) Nanoparticles: Microstructural and Mechanical Properties

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The purpose of this paper is to demonstrate the low-cost manufacturing of aluminum matrix composites reinforced with nano iron oxide as light and efficient materials for engineering applications. It is very desirable to use reinforced aluminum matrix composites in structural applications (automotive, aeronautical, etc.) because of their outstanding stiffness-to-weight and strength-to-weight ratios. In modern industry, it is increasingly important to develop new composites as alternative materials to fabricate multifunctional pieces. Detailed information is presented on the manufacturing process of this composite, and a preliminary study was performed on the cryogenic-cycling behavior to evaluate the interface between the matrix and the reinforcement. Microindentation tests were carried out to evaluate the micromechanical properties of these materials; a simple and practical finite element model is proposed to predict certain parameters related to the composition of the composite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Bayraktar E., Katundi D. Development of a new aluminium matrix composite reinforced with iron oxide (Fe3O4), Journal of Achievements in Materials and Manufacturing Engineering, JAMME, 38/1, 7-14 (2010).

    Google Scholar 

  2. A. Danielou and L. Beaugonin, Internship Final Research Report, Chemical Proc. Dept., P. Vauqelin, 75013, Paris, 2010.

  3. F. Tang, I.E. Anderson, T. Gnaupel-Heroldal and H. Prask: Mater. Sci. Eng. A, 2004, vol. 383 (2), pp. 362–73.

  4. Scott C. D. and Smalley R. E., Effects of c-bond, metal cluster dissociation and evaporation rates on predictions of nanotube production in high-pressure CO, Journal of Nanoscience and Nanotechnology 3, 75-79 (2003).

    Article  Google Scholar 

  5. W. C. Oliver, G. M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, Journal of Materials Research 7 (1992) 1564-83.

    Article  Google Scholar 

  6. L. Duraes, B.F.O. Costa, R. Santos, A. Correia, J. Campos, A. Portugal, Fe2O3/aluminum termite reaction intermediate and final products characterization, Materials Science and Engineering A 465, 199-210 (2007).

    Article  Google Scholar 

  7. Bayraktar E., Masounave J., Caplain R., Bathias C., Manufacturing and damage mechanisms in metal matrix composites, JAMME, Journal of Achievements in Materials and Manufacturing Engineering, 31/2, 294-300 (2008).

    Google Scholar 

  8. Kuc D., Niewielski G., Bednarczyk I., The influence of thermo mechanical treatment on structure of FeAl intermetallic phase-based alloys, Journal of Achievements in Materials and Manufacturing Engineering 29/2, 123-30 (2008).

    Google Scholar 

  9. Mei J., Halldearn R.D., Xiao P., Mechanisms of the Al-iron oxide termite reaction, Scripta Materiala, 41/5, 541-48 (1999).

    Article  Google Scholar 

  10. Narayanasamy R. and Pandey K.S., Some aspects of work hardening in sintered aluminium–iron composite preforms during cold axial forming, Journal of Materials Processing Technology 84, 136–42 (1998).

    Article  Google Scholar 

  11. Grabowski A., Formanek B., Sozanska M., Janicki D., Nowak M., Laser remelting of Al-Fe-TiO powder composite on aluminium matrix, Journal of Achievements in Materials and Manufacturing Engineering, JAMME, 33/1, 78-85 (2009).

    Google Scholar 

  12. Ziębowicz B., Szewieczek D., Dobrzański L.A., New possibilities of application of composite materials with soft magnetic properties, Journal of Achievements in Materials, and Manufacturing Engineering, JAMME, 20/1-2, 207-10 (2007).

    Google Scholar 

  13. Mori, T., Tanaka, K.,. Average stress in matrix and average elastic energy of materials with misting inclusions, Acta Metallurgica, 21, 571-74 (1973).

    Article  Google Scholar 

  14. Doghri I., Tinel L., Micromechanical modelling and computation of elasto-plastic materials reinforced with distributed-orientation fibbers, International Journal of Plasticity; 21, 1919–940 (2005).

    Article  Google Scholar 

  15. Chen T., Cao Z., Guo X., Preparation and characterization of thermo sensitive organic-inorganic hybrid micro gels with functional Fe3O4 nano particles as cross linker, Polymer 52, 172-79 (2011).

    Article  Google Scholar 

  16. Fang B., Wang G., Zhang W., Li M., Kan X., Fabrication of Fe3O4 Nano-particles modified Electrode and its application for voltammetric sensing of dopamine, Journal of electro analysis, 17, 9, 744-48 (2005).

    Article  Google Scholar 

  17. Kang Y.Soo, Risbud S., Rabolt J. F., Stroeve P., Synthesis and Characterization of Nanometer-Size Fe3O4 and γ-Fe2O3 Particles, Chemical Materials, 8, 2209-2211 (1996).

    Article  Google Scholar 

  18. Timmerman J. F., Hayes B. S., Seferis J. C., Nanoclay reinforcement effects on the cryogenic microcracking of carbon fiber/epoxy composites, Composites Science and Technology, 62, 1249–58 (2002).

    Article  Google Scholar 

  19. P.K. Mallick: Fiber-Reinforced Composites: Materials, Manufacturing, and Design, 3rd ed., Marcel Dekker, New York, NY, 1993, p. 556, ISBN: 0849342058.

  20. B. Nguyen: Proceedings of the 44th International SAMPE Conference, 1999, pp. 856–68.

  21. Timmerman J F., Hayes B. S., Seferis J. C., Cryogenic Microcracking of Carbon Fiber/Epoxy Composites: Influences of Fiber-Matrix Adhesion, Journal of Composite Materials, 37/21, 1939-950 (2003).

    Article  Google Scholar 

  22. Salin I., Seferis J.C., Anisotropic degradation of polymeric composites: From neat resin to composite, Journal of Polymer Composites, 13/3, 430-42 (1996).

    Article  Google Scholar 

  23. Crasto A.S., Kim R.Y., On the determination of residual stresses in fiber-reinforced thermoset composites. Journal of Reinforced Plastics and Composites, 12, 545–58 (1993).

    Article  Google Scholar 

  24. Jang B.Z., Lieu Y.K., Chang S., Hwang L.R., Cryogenic failure mechanisms of fiber-epoxy composites for energy applications, Journal of Polymer Composites, 8/3, 188-98 (1987).

    Article  Google Scholar 

  25. Bobrov E.S., Williams J.E.C., Iwasa W., Experimental and theoretical investigation of mechanical disturbances in epoxy-impregnated superconducting coils, 2, Shear-stress-induced epoxy fracture as the principal source of premature quenches and training theoretical analysis, Journal of Cryogenics, 25/6, 307–16 (1985).

    Article  Google Scholar 

  26. Putnam J.W., Hayes B.S., Seferis J.C., Prepreg process-structure-property analysis and scale-up for manufacturing and performance, Journal of Advanced Materials, 27/4, 47-57 (1996).

    Google Scholar 

  27. J.C. Seferis: AFOSR/NL Final Technical Report, Grant# F49620-00-1-0132, Internal No. 03:425, AFOSR: JCS, 2003, pp. 54–59.

  28. Cagiao, M.E., Ania, F. Baltar Calleja, F.J., Hirami, M. Shimomura, T., Application form of indentation, J. Appl. Polym. Sci., vol. 77, pp. 636-43 (2000).

    Article  Google Scholar 

  29. L.A. Ramajo, A.A. Cristóbal, P.M. Botta, J.M. Porto López, M.M. Reboredo, M.S. Castro, Dielectric and magnetic response of Fe3O4/epoxy composites, Composites A 40: 388–93 (2009).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emin Bayraktar.

Additional information

Manuscript submitted January 29, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bayraktar, E., Ayari, F., Tan, M.J. et al. Manufacturing of Aluminum Matrix Composites Reinforced with Iron Oxide (Fe3O4) Nanoparticles: Microstructural and Mechanical Properties. Metall Mater Trans B 45, 352–362 (2014). https://doi.org/10.1007/s11663-013-9970-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-013-9970-1

Keywords

Navigation