Skip to main content
Log in

Mathematical Modeling of Impinging Gas Jets on Liquid Surfaces

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

In top-blowing operations, the gas jet is a major source of momentum, so to model the momentum exchange properly with the liquid, the full-stress boundary conditions must be applied. A new mathematical method for better representation of the surface boundary condition was developed by combining the Cartesian cut cell method and volume of fluid method. The computational code was validated with the broken dam problem and reported critical phenomena in wave generation. The model was applied to impinging jets on liquid surfaces in two dimensions. The cavity depth was in good agreement with experimental measurements. The process of ligament and droplet formation was reproduced. The extent of momentum transfer to the liquid was investigated, and the trends with lance height and gas flow rate were similar to experimental evidence. The following important aspects of momentum transfer were identified: surface roughness as well as the development of local pressure gradients around wave crests. Kelvin–Helmholtz instability theory was used to interpret the results with respect to critical velocity for the onset of droplet formation. These principles were extended to conditions relevant to basic oxygen furnace (BOF) steelmaking. The critical velocities for droplets were calculated as functions of the physical properties for the gas–steel, gas–slag, slag–steel interfaces. The implications for BOF steelmaking were discussed. The mathematical model was applied to a simplified configuration of full-scale BOF steelmaking, and the local force balance was well described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28

Similar content being viewed by others

References

  1. W.E. Olmstead and S. Raynor: J. Fluid Mech., 1964, vol. 19, pp. 561-76.

    Article  Google Scholar 

  2. R.S. Rosler and G.H Stewart: J. Fluid Mech., 1968, vol. 31, pp. 163-74.

    Article  Google Scholar 

  3. M. Evestedt and A. Medvedev: AISTech 2004 Proc., vol. 1, pp. 763–71.

  4. J.-M. Vanden-Broeck: J. Fluid Mech., 2002, vol. 451, pp. 193-201.

    Article  Google Scholar 

  5. B. Spivak, J.-M. Vanden-Broeck, and T. Miloh: Eur. J. Mech. B Fluids, 2002, vol. 21, pp. 207-24.

    Article  Google Scholar 

  6. M. Mallewong, J. Asavanant, and R. Grimshaw: Adv. Fluid Mech., 2004, vol. 40, pp. 219–66.

  7. F. Qian, B. Farouk, and R. Mutharasan: EPD Congress, 1995, pp. 127–41.

  8. F. Qian, B. Farouk, R. Mutharasan, and N. Macken: J. Heat Transfer, 1999, vol. 121, pp. 333-40.

    Article  CAS  Google Scholar 

  9. O. Olivares, A. Elias, R. Sánchez, M. Diáz-Cruz, and R.D. Morales: Steel Res., 2002, vol. 73 (2), pp. 44–51.

  10. S.E. Forrester and G.M Evans: 3 rd CFX Int. Users Conf., 1996, pp. 559–63.

  11. A. Nguyen and E.G. Evans: 3 rd Int. Conf. on CFD in the Mineral and Process Industries, 2003, pp. 71–76.

  12. H.-J. Odenthal, W.H. Emling, J. Kempken, and J. Schlüter: AISTech, 2007, p. 18.

  13. H.Y. Hwang and G.A. Irons: Applied Math. Modeling, 2009, in press.

  14. S. Muzaferija and M Perić: Numer. Heat Transfer B, 1997, vol. 32, pp. 369-84.

    Article  Google Scholar 

  15. J.L. Thé, G.D. Raithby, and G.D. Stubley: Numer. Heat Transfer B, 1994, vol. 26, pp. 367–80.

  16. A. Egelja, M. Schafer, and F. Durst: IJCFD, 1998, vol. 10, pp. 213-34.

    Google Scholar 

  17. C.W. Hirt and B.D. Nichols: J. Comput. Phys., 1981, vol. 39, pp. 201-25.

    Article  Google Scholar 

  18. D.L. Young: Numerical Method for Fluid Dynamics, Acadamic Press, New York, NY, 1981, pp. 273-85.

    Google Scholar 

  19. W. Shyy, S. Udaykumar, M.M. Rao, and R.W. Smith: Computational Fluid Dynamics with Moving Boundaries, Washington, DC: Hemisphere, 1996, pp. 195-248.

    Google Scholar 

  20. H.S. Udaykumar, W. Shyy, and M.M. Rao: Int. J. Numer. Methods Fluids, 1996, vol. 22, pp. 691-712.

    Article  CAS  Google Scholar 

  21. H.S. Udaykumar, R. Mittal, P. Rampnggoon, and A. Khanna: J. Comput. Phys., 2001, vol. 174, pp. 345-80.

    Article  CAS  Google Scholar 

  22. W.J. Coirier and K.G. Powell: J. Comput. Phys., 1995, vol. 117, pp. 121-31.

    Article  Google Scholar 

  23. M. Rudman: Int. J. Numer. Methods Fluids, 1997, vol. 24, pp. 671-91.

    Article  CAS  Google Scholar 

  24. D.J. Benson: Appl. Mech. Rev., 2002, vol. 55, pp. 151-65.

    Article  Google Scholar 

  25. E.G. Puckett, A.S. Almgren, J.B. Bell, D.L. Marcus, and W.J. Rider: J. Comput. Phys., 1997, vol. 130, pp. 269-82.

    Article  Google Scholar 

  26. M.A. Martorano, M.A. Fortes, and A. F. Padilha: Model. Simul. Mater. Sci. Eng., 2006, vol. 14, pp. 83-98.

    Article  Google Scholar 

  27. C. A. J. Fletcher: Computational Techniques for Fluid Dynamics, vol. 1, 2nd ed., Springer, Berlin, Germany, 1991.

    Google Scholar 

  28. D.K. Clarke, M.D. Salas, and H.A. Hassan: AIAA J., 1986, vol. 24, pp. 353-58.

    Article  Google Scholar 

  29. G. Yang, D.M. Causon, D.M. Ingram, R. Saunders, and P. Battern: Aeronaut. J., 1997, pp. 47–56.

  30. J. H. Ferziger and M. Perić: Computational Methods for Fluid Dynamics, 3rd ed., Springer, Berlin, Germany, 2002.

    Book  Google Scholar 

  31. I. Demirdžić and M. Perić: Int. J. Numer. Methods Fluids, 1988, vol. 8, pp. 1037-50.

    Article  Google Scholar 

  32. R.J. Renka: ACM Trans. Math. Soft., 1999, vol. 25, pp. 78-94.

    Article  Google Scholar 

  33. R. J. Renka: ACM Trans. Math. Soft., 1988, vol. 14, pp. 138-48.

    Google Scholar 

  34. R. J. Renka: ACM Trans. Math. Soft., 1988, vol. 14, pp. 149-50.

    Article  Google Scholar 

  35. G. Son and N. Hur: Numer. Heat Transfer B, 2002, vol. 42, pp. 523-42.

    Article  Google Scholar 

  36. D. Gueyffier, J. Li, A. Nadim, R. Scadovelli and S. Zaleski: J. Comput. Phys., 1999, vol. 152, pp. 423-56.

    Article  CAS  Google Scholar 

  37. J. Martin and W.J. Moyce: Philos. Trans. R. Soc. London, Ser. A, 1952, vol. 244 (882), pp. 312–24.

  38. L. Qian, D.M. Causon, D.M. Ingram, and C.G. Mingham: J. Hydraul. Eng., 2003, vol. 129, pp. 688-96.

    Article  Google Scholar 

  39. D. Guo and G.A. Irons: Metall. Mater. Trans. B, 2002, vol. 33B, pp. 377–83.

  40. D. Greaves: Int. J. Numer. Methods Fluids, 2004, vol. 44, pp. 1093-1117.

    Article  Google Scholar 

  41. J.H. Jeong and D.Y. Yang: Int. J. Numer. Methods Fluids, 1998, vol. 26, pp. 1127-54.

    Article  CAS  Google Scholar 

  42. W.H. Munk: J. Mar. Res., 1947, vol. 6, pp. 203-18.

    Google Scholar 

  43. O.M. Phillips: J. Fluid Mech., 1957, vol. 2, pp. 417-45.

    Article  Google Scholar 

  44. M.A.C. Teixeira and S.E. Belcher: Dynam. Atmos. Oceans, 2006, vol. 41, pp. 1–27.

  45. H. Mitsuyasu and T. Honda: J. Fluid Mech., 1982, vol. 123, pp. 425–42.

  46. H.Y. Hwang and G.A. Irons: AISTech, 2009, vol. 1, pp. 769-80.

    Google Scholar 

  47. H. Schlichting: Boundary Layer Theory, McGraw-Hill, New York, NY, 1979.

    Google Scholar 

  48. N. Rajaratnam: Turbulent Jets, Elsevier, Amsterdam, The Netherlands, 1976.

    Google Scholar 

  49. P. Lombardi, V. De Angelis, and S. Banerjee: Phys. Fluids, 1996, vol. 8, pp. 1643–65

  50. J. Szekely: Fluid Flow Phenomena in Metals Processing, Acadamic Press, New York, NY, 1979.

    Google Scholar 

  51. R.B. Banks and D.V. Chandrasekhara: J. Fluid Mech., 1963, vol. 15, pp. 13-34.

    Article  Google Scholar 

  52. S. Chandrasekhar: Hydrodynamic and Hydromagnetic Stability, Dover Publications, New York, NY, 1961.

    Google Scholar 

  53. T. Funda and D.D. Joseph: J. Fluid Mech., 2001, vol. 445, pp. 263–83.

  54. H.D. Ceniceros: Phys. Fluid, 2003, vol. 15, pp. 245-56.

    Article  CAS  Google Scholar 

  55. X. Liu and J.H. Duncan: Nature, 2003, vol. 421, pp. 520-23.

    Article  CAS  Google Scholar 

  56. G.C. Smith: J. Metals, 1966, pp. 846–51.

  57. J. Perez: private communication, December 11, 2007.

  58. B. Deo and R. Boom: Fundamentals of Steelmaking Metallurgy, Prentice Hall International, New York, NY, 1993.

    Google Scholar 

  59. F.P. Ricou and D.B. Spalding: J. Fluid Mech., 1961, vol. 11, pp. 21-32.

    Article  Google Scholar 

  60. Y. Kawai and Y. Shiraishi: Handbook of Physico-Chemical Properties at High Temperature, ISIJ, Tokyo, Japan, 1988.

    Google Scholar 

  61. K.C. Mills, Y. Su, A.B. Fox, Z. Li, R.P. Thackray, and H.T. Tsai: ISIJ Int., 2005, vol. 45, pp. 619-33.

    Article  CAS  Google Scholar 

  62. VDEh: Slag Atlas, 2nd ed., Verlag Sthleisen GmbH, Dűseldorf, Germany, 1995.

  63. Q. Shu and J. Zhang: ISIJ Int., 2006, vol. 46, pp. 1548-53.

    Article  CAS  Google Scholar 

  64. P. Vadász, M. Havlík, and V. Danĕk: Can. Metall. Q., 2000, vol. 39, pp. 143-52.

    Google Scholar 

  65. K. Krishnapisharody and G. Irons: AISTech 2008, May 5–8, 2008, David L. Lawrence Convention Center, Pittsburgh, PA, vol. 1, p. 10, Association for Iron & Steel Technology (AIST), Warrendale, PA, 2008

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gordon A. Irons.

Additional information

Manuscript submitted January 8, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hwang, H.Y., Irons, G.A. Mathematical Modeling of Impinging Gas Jets on Liquid Surfaces. Metall Mater Trans B 42, 575–591 (2011). https://doi.org/10.1007/s11663-011-9493-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-011-9493-6

Keywords

Navigation