Skip to main content
Log in

Thermodynamic Model and Database for Sulfides Dissolved in Molten Oxide Slags

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

A thermodynamic model has been developed in the framework of the modified quasichemical model in the quadruplet approximation to permit the calculation of solubilities of various gaseous species (sulfide, sulfate, nitride, carbide, water, etc.) in molten slags. The model calculates the solubilities solely from knowledge of the thermodynamic activities of the component oxides and the Gibbs energies of the pure liquid components (oxides, sulfides, sulfates, etc.). In the current article, it is shown that solubilities of sulfur as sulfide in Al2O3-CaO-FeO-Fe2O3-MgO-MnO-SiO2-TiO2-Ti2O3 multicomponent slags, which are predicted from the current model with no adjustable model parameters, are in good agreement with all available experimental data. The article also provides a thorough review of experimental sulfide capacity data for this system. The model applies at all compositions from pure oxides to pure sulfides and from basic to acidic slags. By coupling this database with other evaluated databases, such as those for molten metal and gaseous phases, and with general software for Gibbs energy minimization, practically important slag/metal/gas/solid equilibria can be computed such as S-distribution ratios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39

Similar content being viewed by others

References

  1. D.J. Sosinsky and I.D. Sommerville: Metall. Trans. B, 1986, vol. 17B, pp. 331–37.

    Article  CAS  Google Scholar 

  2. M.M. Nzotta, M. Andreasson, P. Jönsson, and S. Seetharaman: Scand. J. Metall., 2000, vol. 29, pp. 177–84.

    Article  CAS  Google Scholar 

  3. H. Gaye and J. Lehmann: Proc. 5 th Int’l. Conference on Molten Slags, Fluxes and Salts, ISS, Warrendale, PA, 1997, pp. 27–34.

  4. R.G. Reddy and M. Blander: Metall. Trans. B, 1987, vol. 18B, pp. 591–96.

    Article  ADS  CAS  Google Scholar 

  5. A.D. Pelton, G. Eriksson, and A. Remero-Serrano: Metall. Trans. B, 1993, vol. 24B, pp. 817–25.

    Article  ADS  CAS  Google Scholar 

  6. A.D. Pelton: Glastech. Ber., 1999, vol. 72, pp. 214–26.

    CAS  Google Scholar 

  7. A.D. Pelton, P. Chartrand, and G. Eriksson: Metall. Mater. A., 2001, vol. 32A, pp. 1409–16.

    Article  Google Scholar 

  8. C. Bale, P. Chartrand, S. Degterov, G. Eriksson, K. Hack, R.B. Mahfoud, J. Melançon, A. Pelton, and S. Petersen: CALPHAD, 2002, vol. 26, pp. 189–228.

    Article  CAS  Google Scholar 

  9. C.W. Bale, E. Bélisle, P. Chartrand, S.A. Decterov, G. Eriksson, K. Hack, I.-H. Jung, Y.-B. Kang, J. Melançon, A.D. Pelton, C. Robelin, and S. Petersen: CALPHAD, 2009, vol. 33, pp. 295–311.

  10. P. Chartrand and A.D. Pelton: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 1417–30.

    Article  CAS  Google Scholar 

  11. P. Chartrand and A.D. Pelton: Light Metals, TMS, Warrendale, PA, 2002, pp. 245–52.

    Google Scholar 

  12. P. Coursol, A.D. Pelton, P. Chartrand, and M. Zamalloa: Metall. Mater. Trans. B, 2005, vol. 36B, pp. 825–36.

    Article  CAS  Google Scholar 

  13. D. Lindberg, R. Backman, M. Hupa, and P. Chartrand: J. Chem. Thermodyn., 2006, vol. 38, pp. 900–15.

    Article  CAS  Google Scholar 

  14. G. Eriksson, P. Wu, M. Blander, and A.D. Pelton: Can. Met. Q., 1994, vol. 33, pp. 13–22.

    CAS  Google Scholar 

  15. P. Wu, G. Eriksson, and A.D. Pelton: J. Amer. Ceram. Soc., 1993, vol. 76, pp. 2065–75.

    Article  CAS  Google Scholar 

  16. G. Eriksson and A.D. Pelton: Metall. Trans. B, 1993, vol. 24B, pp. 807–16.

    Article  ADS  CAS  Google Scholar 

  17. G. Eriksson and A.D. Pelton: Metall. Trans. B, 1993, vol. 24B, pp. 795–805.

    Article  ADS  CAS  Google Scholar 

  18. G. Eriksson, P. Wu, and A.D. Pelton: CALPHAD, 1993, vol. 17, pp. 189–206.

    Article  CAS  Google Scholar 

  19. S.A. Decterov, I.-H. Jung, and A.D. Pelton: J. Am. Ceramic Soc., 2002, vol. 85, pp. 2903–10.

    Article  CAS  Google Scholar 

  20. S.A. Decterov, I.-H. Jung, E. Jak, Y.-B. Kang, P. Hayes, and A.D. Pelton: Proc. 7 th Int’l. Conference on Molten Slags, Fluxes and Salts, The South African Institute of Mining and Metallurgy, Johannesburg, South Africa, 2004, pp. 839–49.

  21. I.-H. Jung, Y.-B Kang, S.A. Decterov, and A.D. Pelton: Metall. Mater. Trans. B, 2004, vol. 35B, pp. 259–68.

    Article  CAS  Google Scholar 

  22. Y.-B. Kang, I.-H Jung, S. Decterov, A.D. Pelton, and H.-G. Lee: ISIJ Int., 2004, vol. 44, pp. 965–74.

    Article  CAS  Google Scholar 

  23. Y.-B. Kang, I.-H Jung, S. Decterov, A.D. Pelton, and H.-G. Lee: ISIJ Int., 2004, vol. 44, pp. 975–83.

    Article  CAS  Google Scholar 

  24. I.-H. Jung, S. Decterov, and A.D. Pelton: J. Phase Equilibria, 2004, vol. 25, pp. 329–45.

    CAS  Google Scholar 

  25. I.-H. Jung, S. Decterov, and A.D. Pelton: J. Phys. Chem. Solids, 2004, vol. 65, pp. 1683–95.

    Article  ADS  CAS  Google Scholar 

  26. I.-H. Jung, S. Decterov, and A.D. Pelton: Metall. Mater. Trans. B, 2004, vol. 35B, pp. 877–89.

    Article  CAS  Google Scholar 

  27. I.-H. Jung, S. Decterov, and A.D. Pelton: J. Eur. Ceram. Soc., 2005, vol. 25, pp. 313–33.

    Article  CAS  Google Scholar 

  28. Y.-B. Kang, I.-H. Jung, and H.-G. Lee: CALPHAD, 2006, vol. 30, pp. 235–47.

    Article  CAS  Google Scholar 

  29. Y.-B. Kang, I.-H. Jung, and H.-G. Lee: CALPHAD, 2006, vol. 30, pp. 226–34.

    Article  CAS  Google Scholar 

  30. E. Jak, P. Hayes, A. Pelton, and S.A. Decterov: Int. J. Mater. Res., 2007, vol. 98, pp. 847–54.

    CAS  Google Scholar 

  31. D.R. Stull and H. Prophet: JANAF Thermochemical Tables, U.S. Department of Commerce, Washington, DC, 1985.

    Google Scholar 

  32. I. Barin, O. Knacke, and O. Kubaschewski: Thermochemical Properties of Inorganic Substances, Springer-Verlag, Berlin, Germany, 1977.

    Google Scholar 

  33. A.F. Holleman and E. Wiberg: Inorganic Chemistry, Academic Press, San Diego, CA, 2001.

    Google Scholar 

  34. P. Waldner and A. Pelton: J. Phase Equilib. Diffus., 2005, vol. 26, pp. 23–38.

    Article  CAS  Google Scholar 

  35. K.C. Mills: Thermodynamic Data for Inorganic Sulphides, Selenides and Tellurides, Butterworths, London, UK, 1974.

    Google Scholar 

  36. L.-I. Staffansson: Metall. Trans. B, 1976, vol. 7B, pp. 131–34.

    ADS  CAS  Google Scholar 

  37. J.P. Coughlin: J. Am. Chem. Soc., 1950, vol. 72, pp. 5445–47.

    Article  CAS  Google Scholar 

  38. SGTE pure substance database: http://www.sgte.org, 2007.

  39. C.J.B. Fincham and F.D. Richardson: J. Iron Steel Inst., 1954, vol. 178, pp. 4–15.

    Google Scholar 

  40. K.P. Abraham, M.W. Davies, and F.D. Richardson: J. Iron Steel Inst., 1960, vol. 196, pp. 309–12.

    CAS  Google Scholar 

  41. P.T. Carter and T.G. Macfarlane: J. Iron Steel Inst., 1957, vol. 185, pp. 62–66.

    Google Scholar 

  42. S.D. Brown, R.J. Roxburgh, I. Ghita, and H.B. Bell: Ironmak. Steelmak., 1982, vol. 9, pp. 163–67.

    Google Scholar 

  43. M. Gornerup and O. Wijk: Scand. J. Metall., 1996, vol. 25, pp. 103–07.

    Google Scholar 

  44. M. Chapman, O. Ostrovski, G. Tranell, and S. Jahanshahi: Elektrometallurgiya, 2000, pp. 34–39.

  45. K.P. Abraham and F.D. Richardson: J. Iron Steel Inst., 1960, vol. 196, pp. 313–17.

    CAS  Google Scholar 

  46. M.M. Nzotta, R. Nilsson, D. Sichen, and S. Seetharaman: Ironmak. Steelmak., 1997, vol. 24, pp. 300–05.

    CAS  Google Scholar 

  47. R.A. Sharma and F.D. Richardson: Trans. Met. Soc. AIME, 1965, vol. 223, pp. 1586–92.

    Google Scholar 

  48. M. Hino and T. Fuwa: Proc. 3 rd Int. Iron and Steel Congress, ASM International, Materials Park, OH, 1979, pp. 321–26.

  49. M. Ito, K. Morita, and N. Sano: ISIJ Int., 1997, vol. 37, pp. 839–43.

    Article  CAS  Google Scholar 

  50. T. Kobayashi, K. Morita, and N. Sano: Metall. Mater. Trans. B, 1996, vol. 27B, pp. 652–57.

    Article  ADS  CAS  Google Scholar 

  51. M. Nzotta: Scand. J. Metall., 1997, vol. 26, pp. 169–77.

    CAS  Google Scholar 

  52. S.R. Simeonov, R. Sridhar, and J.M. Toguri: Metall. Trans. B, 1995, vol. 26B, pp. 325–34.

    CAS  Google Scholar 

  53. E. Drakaliysky, R. Nilsson, D. Sichen, and S. Seetharaman: High Temp. Mater. Process., 1994, vol. 23, pp. 263–72,

    Google Scholar 

  54. M. Hino, S. Kitagawa, and S. Ban-Ya: ISIJ Int., 1993, vol. 33, pp. 36–42.

    Article  CAS  Google Scholar 

  55. G.J.W. Kor and F.D. Richardson: J. Iron Steel Inst., 1968, vol. 206, pp. 700–04.

    CAS  Google Scholar 

  56. R.A. Sharma and F.D. Richardson: J. Iron Steel Inst., 1961, vol. 198, pp. 386–90.

    CAS  Google Scholar 

  57. M. Ohta, T. Kubo, and K. Morita: Tetsu-to-Hagane, 2003, vol. 89, pp. 742–49.

    CAS  Google Scholar 

  58. M.M. Nzotta, D. Sichen, and S. Seetharaman: ISIJ Int., 1998, vol. 38, pp. 1170–79.

    Article  CAS  Google Scholar 

  59. K. Karsrud: Scand. J. Metall., 1984, vol. 13, pp. 173–75.

    Google Scholar 

  60. K. Karsrud: Scand. J. Metall., 1984, vol. 13, pp. 265–68.

    Google Scholar 

  61. M.M. Nzotta, D. Sichen, and S. Seetharaman: ISIJ Int., 1999, vol. 39, pp. 657–63.

    Article  CAS  Google Scholar 

  62. J.-D. Shim and S. Ban-Ya: Tetsu-to-Hagane, 1982, vol. 68, pp. 251–60.

    CAS  Google Scholar 

  63. A. Bronson and G.R. St. Pierre: Metall. Trans. B., 1981, vol. 12B, pp. 729–31.

    Article  ADS  CAS  Google Scholar 

  64. M.M. Nzotta: High Temp. Mater. Process., 1997, vol. 16, pp. 261–71.

    CAS  Google Scholar 

  65. M.M. Nzotta, D. Sichen, and S. Seetharaman: Metall. Trans. B., 1999, vol. 30B, pp. 909–20.

    CAS  Google Scholar 

  66. M.R. Kalyanram, T.G. Macfarlane, and H.B. Bell: J. Iron Steel Inst., 1960, vol. 195, pp. 58–64.

    CAS  Google Scholar 

  67. R. Nilsson and S. Seetharaman: Scand. J. Metall., 1995, vol. 24, pp.81–86.

    Google Scholar 

  68. S. Ban-Ya, M. Hino, A. Sato, and O. Terayama: Tetsu-to-Hagane, 1991, vol. 77, pp.361–68.

    CAS  Google Scholar 

  69. Y. Taniguchi, N. Sano, and S. Seetharaman: Proc. Sano Symposium, Inst. Industrial Science, University of Tokyo, Tokyo, Japan, 2008, pp. 145–51.

  70. H.St.C. O’Neill and J.A. Mavrogenes: J. Petrol., 2002, vol. 43, pp. 1049–87.

    Article  Google Scholar 

  71. E. Drakaliysky, N.S. Srinivasan, and L.-I. Staffansson: Scand. J. Metall., 1991, vol. 20, pp.251–55.

    CAS  Google Scholar 

  72. K. Karsrud: Scand. J. Metall., 1984, vol. 13, pp. 144–50.

    Google Scholar 

  73. E. Drakaliysky, D. Sichen, and S. Seetharaman: Can. Metall. Q., 1997, vol. 36, pp. 115–20.

    Article  CAS  Google Scholar 

  74. J. Cameron, T.B. Gibbons, and J. Taylor: J. Iron Steel Inst., 1966, vol. 206, pp. 1223–28.

    Google Scholar 

  75. J.-D. Seo and S.-H. Kim: Steel Res., 1999, vol. 70, pp. 203–08.

    CAS  Google Scholar 

  76. I. Ghita and H.B. Bell: Ironmak. Steelmak., 1982, vol. 9, pp. 239–43.

    Google Scholar 

  77. J.H. Andrew, W.R. Maddocks, and E.A. Fowler: J. Iron Steel Inst., 1931, vol. 124, pp. 295–325.

    Google Scholar 

  78. D.-H. Woo, Y.-B. Kang, H. Gaye, and H.-G. Lee: Proc. 8 th Int’l. Conference on Molten Slags, Fluxes and Salts, Universidad de Concepción, Concepción Province, Chile, 2009, pp. 143–48.

  79. E.N. Silverman: Trans. Met. Soc. AIME, 1961, vol. 221, pp. 512–17.

    CAS  Google Scholar 

  80. H.C. Chao, Y.E. Smith, and L.H. Van Vlack: Trans. Met. Soc. AIME, 1963, vol. 227, pp. 796–97.

    CAS  Google Scholar 

  81. A. Hasegawa, K. Morita, and N. Sano: Tetsu-to-Hagane, 1995, vol. 81, pp. 1109–13.

    CAS  Google Scholar 

  82. T.-G. Kim, W.-K. Lee, J.-H. Park, D.-J. Min, and H.-S. Song, ISIJ Int., 2002, vol. 41, pp. 1460–64.

    Article  Google Scholar 

  83. N. Koyama, F. Tsukihashi, and N. Sano: Tetsu-to-Hagane, 1993, vol. 79, pp. 1334–37.

    CAS  Google Scholar 

  84. D.-H. Woo: unpublished research, GIFT, POSTECH, Pohang, Korea, 2009.

Download references

Acknowledgments

This study was supported by a grant from the Fundamental R&D Program for Core Technology of Materials funded by the Ministry of Commerce, Industry and Energy, Republic of Korea. One author (Y.B.K.) would like to thank Mr. D.-H. Woo (POSTECH, Korea) for providing unpublished experimental data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arthur D. Pelton.

Additional information

Manuscript submitted February 13, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kang, YB., Pelton, A.D. Thermodynamic Model and Database for Sulfides Dissolved in Molten Oxide Slags. Metall Mater Trans B 40, 979–994 (2009). https://doi.org/10.1007/s11663-009-9283-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-009-9283-6

Keywords

Navigation