Skip to main content
Log in

Influence of carbon structure and mineral association of coals on their combustion characteristics for pulverized coal injection (PCI) application

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The influence of carbon structure and mineral matter of three pulverized coals on their char characteristics including reactivity was studied under a range of combustion conditions in a drop tube furnce (DTF) and thermogravimetric (TGA) furnace for PCI application. Physical and chemical properties of coals and their combustion derivatives were characterized by automated reflectogram, X-ray diffraction, scanning electron microscope, and BET N2 adsorption. The QEMSCAN technique was used to characterize the heterogeneous nature of minerals of discrete coal particles. The TGA char reactivity was related to the proportion of coal particles displaying strong association of calcium/sulfur phases with carbon matrix to highlight the catalytic influence of minerals on char reactivity at low temperatures. The study suggested that during DTF combustion tests at 1200 °C, char reaction rates might have been catalyzed by coal minerals, particularly due to illite and its association with carbon. Under the same combustion conditions, most of the coal minerals did not transform significantly to slag phases. Coal burnout was found to improve significantly in a combustion temperature range of 1200 °C to 1500 °C. The improvement of coal burnout with temperature appeared to be influenced by coal properties, particularly as a function of the chemical nature of minerals, as well as the degree of associations with other minerals. The study implies that coals with similar mineral compositions might not necessarily reflect similar combustion behavior due to the differences in their associations with other phases. The study highlighted the significance of the characterization of the heterogeneity of coal particles including mineral associations for a comprehensive and reliable assessment of the combustion performance of PCI in an operating blast furnace.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W.P. Hutny, G.K. Lee, and J.T. Price: Prog. Energy Combust. Sci., 1991, vol. 17, pp. 373–95.

    Article  CAS  Google Scholar 

  2. E. Beppler, B. Gerstenberg, U. Janhsen, and M. Peters: Proceedings of Ironmaking Conference Proceedings, U.S.A., 1992, pp. 171–84.

  3. P. Bennet and D. Holcombe: Commissioned Study of PCI Research and Future Directions, 1994, Australian Coal Association Research Program (ACARP) Report No. C3099.

  4. P. Bennett: Coal Characterization for PCI, 1997, ACARP Report No. C7001.

  5. K. Ishii: Advanced Pulverised Coal Injection and Blast Furnace Operation, 2000, Elsevier Science Ltd., U.K.

    Google Scholar 

  6. M. Mahoney, H. Rogers, N. Andriopoulos, and R. Gupta: Understanding Mineral Matter in Australian Coking Coals and PCI Coals, 2002, Australian Coal Association Research Program (ACARP) Report No. C9059.

  7. M.J. McCarthy, J.G. Mathieson, S. Nomura, and H. Rogers: Proceedings of International Conference on Coal Science, Sydney, 1985, pp. 423–26.

  8. S. Bortz and G. Flament: Ironmaking Steelmaking, 1983, vol. 10 (5), pp. 222–29.

    CAS  Google Scholar 

  9. T. Suzuki, R. Hirose, K. Morimoto, and T. Abe: Twentieth Symposium (International) on Coal Combustion, 1984, The Combustion Institute, Pittsburgh, PA, 1984, pp. 1419–25.

    Google Scholar 

  10. N. Oka, T. Murayama, H. Matsouka, T. Yamada, S. Shinozaki, and M. Shibaoka: Fuel Process. Technol., 1987, vol. 15, pp. 213–24.

    Article  CAS  Google Scholar 

  11. S. Su, J.H. Pohl, D. Holcombe, and J.A. Hart: Fuel, 2001, vol. 80, pp. 699–706.

    Article  CAS  Google Scholar 

  12. M.A. Field: Combust. Flame, 1969, vol. 13, pp. 237–52.

    Article  CAS  Google Scholar 

  13. I.W. Smith: Combust. Flame, 1971, vol. 17, pp. 421–28.

    Article  CAS  Google Scholar 

  14. I.W. Smith: Fuel, 1978, vol. 57, pp. 409–14.

    Article  CAS  Google Scholar 

  15. I.W. Smith: Nineteenth Symposium (International) on Combustion, 1982, The Combustion Institute, Pittsburgh, PA, pp. 1045–65.

    Google Scholar 

  16. L.D. Smoot and P.J. Smith: Coal Combustion and Gasification, 1985, Plenum Press, New York.

    Google Scholar 

  17. N.M. Laureneau: Prog. Energy Combust. Sci., 1978, vol. 4, pp. 221–70.

    Article  Google Scholar 

  18. W.F. Wells, S.K. Kramer, and L.D. Smoot: Twentieth Symposium (International) on Combustion, 1984, The Combustion Institute, Pittsburgh, PA, pp. 1539–46.

    Google Scholar 

  19. A.K. Abd El-Samed, E. Hampartsoumian, T.M. Farag, and A. Williams: Fuel, 1990, vol. 69, pp. 1029–36.

    Article  CAS  Google Scholar 

  20. K.A. Davis, R.H. Hurt, N.Y.C. Yang, and T.J. Headley: Combust. Flame, 1995, vol. 100, pp. 31–40.

    Article  CAS  Google Scholar 

  21. N.V. Russell, T.J. Beeley, C.K. Man, J.R. Gibbins, and J. Williamson: Fuel Process. Technol., 1998, vol. 57, pp. 113–30.

    Article  CAS  Google Scholar 

  22. M.L. Chan, J.M. Jones, M. Pourkashanian, and A. Williams: Fuel, 1999, vol. 78, pp. 1539–52.

    Article  CAS  Google Scholar 

  23. N.V. Russell, J.R. Gibbins, C.K. Man, and J. Williamson: Energy Fuels, 2000, vol. 14, pp. 883–88.

    Article  CAS  Google Scholar 

  24. L. Lu, V. Sahajwalla, and D. Harris: Metall. Mater. Trans. B, 2001, vol. 32B, pp. 811–19.

    CAS  Google Scholar 

  25. A. Zolin, A.D. Jensen, P.A. Jensen, and K. Dam-Johansen: Fuel, 2002, vol. 81 (8), pp. 1065–75.

    Article  CAS  Google Scholar 

  26. Z. Xu, Q. Chen, and H. Fan: Fuel, 2003, vol. 82, pp. 853–58.

    Article  CAS  Google Scholar 

  27. P.A. Morgan, S.D. Robertson, and J.F. Unsworth: Fuel, 1986, vol. 65, pp. 1546–51.

    Article  CAS  Google Scholar 

  28. J.G. Bailey, A. Tate, C.F.K. Diessel, and T.F. Wall: Fuel, 1990, vol. 69, pp. 225–39.

    Article  CAS  Google Scholar 

  29. R.E. Michell and A.E.J. Akanetuk: 26th Symposium (International) on Combustion, 1996, The Combustion Institute, Pittsburgh, PA, pp. 3137–44.

    Google Scholar 

  30. G. O’Brien, B. Jenkin, J. Esterle, and H. Beath: Fuel, 2003, vol. 82, pp. 1067–73.

    Article  CAS  Google Scholar 

  31. R.W. Bryers: Prog. Energy Combust. Sci., 1996, vol. 22 (1), pp. 29–120.

    Article  CAS  Google Scholar 

  32. S.A Benson: Energy Fuels, 1993, vol. 7, pp. 743–45.

    Article  CAS  Google Scholar 

  33. R.G. Jenkins, B.N. Nandi, and P.L. Walker: Fuel, 1973, vol. 52, pp. 288–93.

    Article  CAS  Google Scholar 

  34. A.M. Carpenter and N.M. Skorupska: Coal Combustion: Analysis and Testing, 1993, IEA Coal Research, London.

    Google Scholar 

  35. L.R. Radovic, P.L. Walker, Jr., and R.G. Jenkins: Fuel, 1983, vol. 62, pp. 209–12.

    Article  CAS  Google Scholar 

  36. J. Rivera-Utrilla, A. Lopez-Peinado, C. Moreno-Castilla, and J.D. Lopez-Gonzalez: Fuel, 1987, vol. 66, pp. 237–41.

    Article  CAS  Google Scholar 

  37. D.P. McCollor, B.C. Young, M.L. Jones, and S.A. Benson: Twenty-Second (International) Symposium on Combustion, 1988, The Combustion Institute, Pittsburgh, PA, pp. 56–67.

    Google Scholar 

  38. Y.A. Levendis, S.W. Nam, M. Lowenberg, R.C. Flagan, and G.R. Gavalas: Energy Fuels, 1989, vol. 3, pp. 28–37.

    Article  CAS  Google Scholar 

  39. R.E. Mitchel: Twenty-Third Symposium (International) on Combustion, 1990, The Combustion Institute, Pittsburgh, PA, pp. 1297–304.

    Google Scholar 

  40. S. Kucukbayrak: Thermochem. Acta, 1993, vol. 216, pp. 119–29.

    Article  Google Scholar 

  41. R.F. Cope, C.B. Arrington, and W.C. Hecker: Energy Fuels, 1994, vol. 8, pp. 1095–99.

    Article  CAS  Google Scholar 

  42. R. Gopalakrishnan, M.J. Fullwood, and C.H. Bartholomew: Energy Fuels, 1994, vol. 8, pp. 984–89.

    Article  CAS  Google Scholar 

  43. R. Gopalakrishnan and C.H. Bartholomew: Energy Fuels, 1996, vol. 10, pp. 689–95.

    Article  CAS  Google Scholar 

  44. C. Sentorun, H. Haykiri-Acma, and S. Kucukbayrak: Thermochem. Acta, 1996, vol. 277, pp. 65–73.

    Article  CAS  Google Scholar 

  45. C. Sentorun and S. Kucukbayrak: Thermochem. Acta, 1996, vol. 285, pp. 35–46.

    Article  CAS  Google Scholar 

  46. F. Wigley, J. Williamson, and W.H. Gibb: Fuel, 1997, vol. 13, pp. 1283–88.

    Article  Google Scholar 

  47. I. Mochida and T. Miyazaki: Energy Fuels, 1998, vol. 12, pp. 939–44.

    Article  CAS  Google Scholar 

  48. M.M. Lunden, N.Y.C. Yang, T.J. Headley, and C.R. Shaddix: Twenty-Seventh Symposium (International) on Combustion, 1998, The Combustion Institute, Pittsburgh, PA, pp. 1695–702.

    Google Scholar 

  49. H. Haykiri-Acma, R. Yavuz, A. Ersoy-Mericboyu, and S. Kucukbayrak: Thermochem. Acta, 1999, vol. 342, pp. 79–84.

    Article  CAS  Google Scholar 

  50. B. Feng, R. Yan, and C.G. Zheng: Devel. Chem. Engin. Mineral Process., 1999, vol. 7 (3), pp. 387–95.

    Google Scholar 

  51. A. Zolin, A.D. Jensen, P.A. Jensen, F. Frandsen, and K. Dam-Johansen: Energy Fuels, 2001, vol. 15, pp. 1110–22.

    Article  CAS  Google Scholar 

  52. R. Kurose, M. Ikeda, and H. Makino: Fuel, 2001, vol. 80, pp. 1447–55.

    Article  CAS  Google Scholar 

  53. L. Lemaignen, Y. Zhuo, G.P. Reed, D.R. Dugwell, and R. Kankiyoti: Fuel, 2002, vol. 81, pp. 315–26.

    Article  CAS  Google Scholar 

  54. R. Menendez, D. Alvarez, A.B. Fuertes, G. Hamburg, and J.M. Vleeskens: Energy Fuels, 1994, vol. 8 (5), pp. 1007–15.

    Article  CAS  Google Scholar 

  55. L.M. Zhang, Z.C. Tan, S.D. Wang, and D.Y. Wu: Thermochem. Acta, 1997, vol. 299, pp. 13–17.

    Article  CAS  Google Scholar 

  56. H.E. Newall: Fuel Sci. Practice, 1939, vol. 18 (1), pp. 13–20.

    CAS  Google Scholar 

  57. M.A. Diego: Thesis, 1992, The University of Sheffield, U.K.

    Google Scholar 

  58. D.A. Spears: Appl. Clay Sci., 2000, vol. 16, pp. 87–95.

    Article  CAS  Google Scholar 

  59. S. Charpenay, M.A. Serio, and P.R. Solomon: Twenty-Fourth Symposium (International) on Combustion, 1992, The Combustion Institute, Pittsburgh, PA, pp. 1189–97.

    Google Scholar 

  60. W.S. Watanabe and D.K. Zhang: Fuel Process. Technol., 2001, vol. 74, pp. 145–60.

    Article  CAS  Google Scholar 

  61. J. Warne and J.V. Dubrawski: Thermochem. Acta, 1990, vol. 166, pp. 337–41.

    Article  CAS  Google Scholar 

  62. C.G. Thibaut: Chemistry of Coal Utilization, 1963, Wiley, New York.

    Google Scholar 

  63. P.L.J. Walker, M. Shelef, and R.A. Anderson: Chemistry and Physics of Carbon, 1966, Marcel Dekker, New York, NY.

    Google Scholar 

  64. R. Wagner, H.J. Muhlen, and K.H. Van Heek: International Conference on Coal Science, Amsterdam, 1987, pp. 801–04.

  65. R. Wagner and H.J. Muhlen: Fuel, 1989, vol. 68, pp. 251–53.

    Article  CAS  Google Scholar 

  66. A.R. Butcher, D. French, A. Cropp, P. Gottlieb, T. Wall, and R.P. Gupta: Proceedings of 21st International Pittsburgh Coal Conference Proceedings, Osaka, Japan, 2004, p. 13.

  67. B.D. Cullity: Elements of X-Ray Diffraction, 1978, Addison-Wesley Publishing, U.S.A.

    Google Scholar 

  68. Y. Al-Omari: Thesis, 2005, The University of New South Wales, Sydney, Australia.

    Google Scholar 

  69. G.H. Taylor, M. Teichmüller, A. Davis, C.F.K. Diessel, R. Littke, and P. Robert: Organic Petrology, 1998, Gebrüder Borntraeger, Berlin.

    Google Scholar 

  70. E. Raask: Mineral Impurities in Coal Combustion, 1985, Hemisphere Publishing Corporation, U.S.A.

    Google Scholar 

  71. M. Enders, W. Willenborg, J. Albrecht, and A. Putins: Fuel Process. Technol., 2000, vol. 68, pp. 57–73.

    Article  CAS  Google Scholar 

  72. J.H. Pohl: ACS Symposium Series 301, 1986, (Ed. Vorres, K.S.), U.S.A., pp. 430–36.

Download references

Author information

Authors and Affiliations

Authors

Additional information

QEMSCAN is a trademark of Intellection Pty Ltd., Milton, Queensland, Australia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gupta, S., Sahajwalla, V., Al-Omari, Y. et al. Influence of carbon structure and mineral association of coals on their combustion characteristics for pulverized coal injection (PCI) application. Metall Mater Trans B 37, 457–473 (2006). https://doi.org/10.1007/s11663-006-0030-y

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-006-0030-y

Keywords

Navigation