Skip to main content
Log in

Gradient Residual Strain Measurement Procedure in Surface Impacted Railway Steel Axles by Using Neutron Scattering

  • Topical Collection: 2023 Metallurgical Processes Workshop for Young Scholars
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

High-speed railway S38C axles undergo surface induction hardening for durability, but are susceptible to fatigue cracks from foreign object impact. The neutron diffraction method was employed to measure the residual strain in S38C axles, obtaining microscopic lattice distortion data, for the gradient layer at a depth of 8 mm under the surface. The results showed that after induction-hardening, the microscopic lattice distortion had a gradient distribution, decreasing with the distance from the surface. However, in the case of impacting speed of 600 km/m, the average microscopic lattice distortion increased with the distance from the surface, reaching a maximum augmentation of 55 pct. These findings indicate a strong experimental basis, and improve our understanding of the relationship between macroscopic residual stress and decision-making, in regard to operation and maintenance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. T. Makino, T. Kato, and K. Hirakawa: Eng. Fract. Mech., 2011, vol. 78, pp. 810–25.

    Article  Google Scholar 

  2. S.C. Wu, Z.W. Xu, G.Z. Kang, and W.F. He: Int. J. Fatigue, 2018, vol. 117, pp. 90–100.

    Article  Google Scholar 

  3. H. Zhang, S.C. Wu, N. Ao, L. Zhou, L.Q. Wang, and D. Liu: Eng. Fail. Anal., 2023, vol. 149, p. 107254.

    Article  CAS  Google Scholar 

  4. Y.N. Hu, Q.B. Qin, S.C. Wu, X. Zhao, and W.J. Wang: Int. J. Fatigue, 2020, vol. 144, p. 106068.

    Article  Google Scholar 

  5. J.W. Gao, M.H. Yu, D. Liao, S.P. Zhu, J. Han, G. Lesiuk, and J. De Jesus Correia: Int. J. Fatigue, 2021, vol. 149, p. 106276.

    Article  CAS  Google Scholar 

  6. M. Perić, Z. Tonković, A. Rodić, M. Surjak, I. Garašić, I. Boras, and S. Švaić: Mater. Des., 2014, vol. 53, pp. 1052–63.

    Article  Google Scholar 

  7. J.W. Bae, J.G. Kim, J.M. Park, W. Woo, S. Harjo, and H.S. Kim: Scr. Mater., 2019, vol. 165, pp. 60–63.

    Article  CAS  Google Scholar 

  8. P. Lukáš, Z. Kouřil, P. Strunz, P. Mikula, M. Vrána, and V. Wagner: Phys. B Condens., 1997, vol. 234–236, pp. 956–58.

    Article  ADS  Google Scholar 

  9. C.H. Lee, G. Song, M.C. Gao, R. Feng, P.Y. Chen, J. Brechtl, Y. Chen, K. An, W. Guo, J.D. Poplawsky, S. Li, A.T. Samaei, W. Chen, A. Hu, H. Choo, and P.K. Liaw: Acta Mater., 2018, vol. 160, pp. 158–72.

    Article  ADS  CAS  Google Scholar 

  10. Z. Liao, B. Yang, Y.H. Qin, S. Xiao, G.W. Yang, T. Zhu, and N. Gao: Int. J. Fatigue, 2020, vol. 132, p. 105366.

    Article  CAS  Google Scholar 

  11. H. Ishiduka: Railw. Res. Rep. (RRR), 2005, vol. 10, pp. 34–5.

    Google Scholar 

  12. H. Ishizuka: Proceedings of the 11th International Wheelset Congress, National Conference Publication, Australia, 1995, pp. 43–6.

    Google Scholar 

  13. A. Deal, I. Spinelli, A. Chuang, Y. Gao, and T. Broderick: Mater Charact, 2021, vol. 175, p. 111027.

    Article  CAS  Google Scholar 

  14. P.J. Withers: C. R. Phys., 2007, vol. 8, pp. 806–20.

    Article  ADS  CAS  Google Scholar 

  15. Q. Huang, R. Shi, O. Muránsky, H. Beladi, S. Kabra, C. Schimp, O. Volkova, H. Biermann, and J. Mola: Sci. Rep., 2020, vol. 10, p. 13536.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  16. S. Harjo, N. Tsuchida, J. Abe, and W. Gong: Sci. Rep., 2017, vol. 7(1), p. 15149.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  17. S.A. Kim and W.L. Johnson: Mater. Sci. Eng. A, 2007, vol. 452, pp. 633–39.

    Article  Google Scholar 

  18. H.M. Ledbetter: Phys. Stat. Solidi. A, 1984, vol. 85, pp. 89–96.

    Article  ADS  CAS  Google Scholar 

  19. S. Morooka and P.G. Xu: Hamon (Online), 2021, vol. 31, pp. 9–10.

    Article  Google Scholar 

  20. H. Suzuki, S. Harjo, J. Abe, P.G. Xu, K. Aizawa, and K. Akita: Nucl. Instrum. Methods Phys. Res., 2013, vol. 715, pp. 28–38.

    Article  ADS  CAS  Google Scholar 

  21. J. Chen, L. Kang, H.L. Lu, P. Luo, F.W. Wang, and L.H. He: Physica B, 2018, vol. 551, pp. 370–72.

    Article  ADS  CAS  Google Scholar 

  22. P.J. Withers, M. Preuss, A. Steuwer, and J.W.L. Pang: J. Appl. Crystallogr., 2007, vol. 40, pp. 891–904.

    Article  ADS  CAS  Google Scholar 

  23. T. Ungár: Scr. Mater., 2004, vol. 51, pp. 777–81.

    Article  Google Scholar 

  24. A. Serquis, Y.T. Zhu, E.J. Peterson, J.Y. Coulter, D.E. Peterson, and F.M. Mueller: Appl. Phys. Lett., 2001, vol. 79, pp. 4399–4401.

    Article  ADS  CAS  Google Scholar 

  25. Z. Budrovic, H.V. Swygenhoven, P.M. Derlet, S.V. Petegem, and B. Schmitt: Science, 2004, vol. 304, pp. 273–76.

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Y.M. Wang, F. Sansoz, T. LaGrange, R.T. Ott, J. Marian, T.W. Barbee, and A.V. Hamza: Nat. Mater., 2013, vol. 12, pp. 697–702.

    Article  ADS  CAS  PubMed  Google Scholar 

  27. S. Brandstetter, P.M. Derlet, S.V. Petegem, and H.V. Swygenhoven: Acta Mater., 2008, vol. 56, pp. 165–76.

    Article  ADS  CAS  Google Scholar 

  28. S.D. Bakshi, D. Sinha, and S.G. Chowdhury: Mater Charact, 2018, vol. 142, pp. 144–53.

    Article  Google Scholar 

  29. B.B. He, B. Hu, H.W. Yen, G.J. Cheng, Z.K. Wang, H.W. Luo, and M.X. Huang: Science, 2017, vol. 357, pp. 1029–32.

    Article  ADS  CAS  PubMed  Google Scholar 

  30. T. Ungár and A. Borbély: Appl. Phys. Lett., 1996, vol. 69, pp. 3173–75.

    Article  ADS  Google Scholar 

  31. T. Ungár, I. Dragomir, Á. Révész, and A. Borbély: J. Appl. Crystallogr., 1999, vol. 32, pp. 992–1002.

    Article  ADS  Google Scholar 

  32. R.K. Nutor, Q. Cao, X. Wang, D. Zhang, Y. Fang, Y. Zhang, and J. Jiang: Adv. Eng. Mater., 2020, vol. 22, p. 2000466.

    Article  CAS  Google Scholar 

  33. C.H. Lee, G. Song, M.C. Gao, R. Feng, P.Y. Chen, J. Brechtl, Y. Chen, K. An, and W. Guo: Acta Mater., 2018, vol. 160, pp. 158–72.

    Article  ADS  CAS  Google Scholar 

  34. N. Ding, H.H. Jiang, C.R. Xu, L. Shao, and B.Y. Tang: Ceram. Int., 2022, vol. 48, pp. 35353–5364.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Sincere thanks are given to the National Key Research and Development Program of China (2023YFA1609200), and the Independent Research Project of State Key Laboratory of Rail Transit Vehicle System (2024RVL_T06). This work was performed under the Shared Use Program of JAEA Facilities (JRR-3: 2022A-A07), with the instrumental support from Dr. Satoshi Morooka and the Shared Use Program of CSNS Facilities (GPPD: P1821122300034 and P1822113000076), with the instrumental support of Dr. Feiran Shen.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pingguang Xu or Shengchuan Wu.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, L., Zhang, H., Qin, T. et al. Gradient Residual Strain Measurement Procedure in Surface Impacted Railway Steel Axles by Using Neutron Scattering. Metall Mater Trans A (2024). https://doi.org/10.1007/s11661-024-07352-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11661-024-07352-5

Navigation