Skip to main content
Log in

Effect of Thickness-Dependent Sandwich Microstructure on the Thermal Conductivity of HPDC Mg–4Sm–2Al Alloy

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

High-pressure die casting (HPDC) components exhibit unique sandwich microstructural features along the thickness direction, thereby displaying solute distribution patterns distinct from those of components produced through alternative casting methods. Considering the notable influence of solute atoms on thermal conductivity, relying solely on the local microstructure to characterize the thermal conductivity of HPDC components is an incomplete approach. This work investigated the effect of thickness-dependent sandwich microstructure on the thermal conductivity of an HPDC model alloy (Mg–4Sm–2Al). The results reveal that the volume fractions of distinct layers (TSkin/T, TCore/T and TSB/T) remain constant as plate thickness increases. Nevertheless, the solute atom concentration within the skin layer gradually decreases as plate thickness increases, a phenomenon attributed to the reduced solidification rate, which allows sufficient time for solute atom precipitation. Intriguingly, within the core layer, solute atom concentration follows a nonlinear pattern, decreasing and then increasing. The varied distributions of externally solidified crystals (ESCs) are primarily responsible for this paradoxical increase. As plate thickness increases, the ESCs transform from a clustered core distribution to a uniform through-thickness distribution, progressively altering the solidification behavior of the alloy. Concurrently, an effective model for the sandwich microstructure that considers interactions among solute atoms within the α-Mg matrix is proposed. This model successfully characterizes the thermal conductivity of HPDC alloys and finds application in Mg–Sm–Al system alloys, with a relative error of less than 15 pct between the predicted and experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data Availability

The raw/processed data required to reproduce these findings cannot be shared at this time as the data also forms part of an ongoing study.

References

  1. C. Su, D. Li, A.A. Luo, R. Shi, and X. Zeng: Metall. Mater. Trans. A, 2019, vol. 50A, pp. 1970–84.

    Article  Google Scholar 

  2. S. Li, X. Yang, J. Hou, and W. Du: J. Magn. Alloy, 2020, vol. 8, pp. 78–90.

    Article  CAS  Google Scholar 

  3. J. Rong, W. Xiao, X. Zhao, Y. Fu, H. Liao, C. Ma, M. Chen, and C. Huang: J. Alloy Compd., 2022, vol. 896, 162943.

    Article  CAS  Google Scholar 

  4. C. Su, D. Li, A.A. Luo, T. Ying, and X. Zeng: J. Alloy Compd., 2018, vol. 747, pp. 431–37.

    Article  CAS  Google Scholar 

  5. Z. Li, B. Hu, D. Li, W. Zhang, X. Zeng, Z. Lin, C. Jin, and S. Zhao: Mater. Sci. Eng. A, 2022, vol. 861, 144336.

    Article  CAS  Google Scholar 

  6. J. Rong, W. Xiao, Y. Fu, X. Zhao, P. Yan, C. Ma, M. Chen, and C. Huang: Mater. Sci. Eng. A, 2022, vol. 849, 143500.

    Article  CAS  Google Scholar 

  7. J.P. Weiler: J. Magn. Alloy., 2021, vol. 9, pp. 102–111.

    Article  CAS  Google Scholar 

  8. X. Zhao, Z. Li, W. Zhou, D. Li, M. Qin, and X. Zeng: J. Mater. Res., 2021, vol. 36, pp. 3145–54.

    Article  CAS  Google Scholar 

  9. C.M. Gourlay, H.I. Laukli, and A.K. Dahle: Metall. Mater. Trans. A, 2007, vol. 38A, pp. 1833–44.

    Article  CAS  Google Scholar 

  10. E. Deda, T.D. Berman, and J.E. Allison: Metall. Mater. Trans. A, 2017, vol. 48A, pp. 1999–2014.

    Article  Google Scholar 

  11. Y. Xia, J. Zheng, J. Chen, Y. Zhang, R. Shi, H. Zhou, Z. Zhou, and D. Yin: Metall. Mater. Trans. A, 2021, vol. 52A, pp. 2274–86.

    Article  Google Scholar 

  12. C.M. Gourlay and A.K. Dahle: Nature, 2007, vol. 445, pp. 70–73.

    Article  CAS  PubMed  Google Scholar 

  13. T.D. Berman, Z. Yao, E. Deda, L. Godlewski, M. Li, and J.E. Allison: Metall. Mater. Trans. A, 2022, vol. 53A, pp. 2730–42.

    Article  Google Scholar 

  14. J. Maxwell: A Treatise on Electricity and Magnetism, Oxford University Press, Cambridge, 1904.

    Google Scholar 

  15. J. Wang, J.K. Carson, M.F. North, and D.J. Cleland: Int. J. Heat Mass Transf., 2008, vol. 51, pp. 2389–97.

    Article  CAS  Google Scholar 

  16. J.C. Maxwell: A Treatise on Electricity and Magnetism, 3rd ed. Dover Publications Inc., New York, 1954.

    Google Scholar 

  17. J. Wang, J.K. Carson, M.F. North, and D.J. Cleland: Int. J. Heat Mass Transf., 2006, vol. 49, pp. 3075–83.

    Article  Google Scholar 

  18. J. He, J. Chen, H. Yan, W. Xia, B. Su, Y. Sun, Y. Nie, W. Huang, and M. Wu: J. Mater. Res., 2022, vol. 37, pp. 1727–38.

    Article  CAS  Google Scholar 

  19. G. Luo, X. Zhou, C. Li, Z. Huang, and J. Du: Int. J. Metalcast., 2022, vol. 16, pp. 1585–94.

    Article  CAS  Google Scholar 

  20. J.K. Chen, H.Y. Hung, C.F. Wang, and N.K. Tang: J. Mater. Sci., 2015, vol. 50, pp. 5630–39.

    Article  CAS  Google Scholar 

  21. Q. Yang, K. Guan, X. Qiu, D. Zhang, S. Lv, F. Bu, Y. Zhang, X. Liu, and J. Meng: Mater. Sci. Eng. A, 2016, vol. 675, pp. 396–402.

    Article  CAS  Google Scholar 

  22. X. Li, S.M. Xiong, and Z. Guo: J. Mater. Sci. Technol., 2016, vol. 32, pp. 54–61.

    Article  CAS  Google Scholar 

  23. A.K. Dahle, S. Sannes, D.H. St. John, and H. Westengen: J. Light. Met., 2001, vol. 1, pp. 99–103.

    Article  Google Scholar 

  24. A.K. Dahle and D.H. StJohn: Acta Mater., 1998, vol. 47, pp. 31–41.

    Article  Google Scholar 

  25. J. Song, S.-M. Xiong, M. Li, and J. Allison: J. Alloy Compd., 2009, vol. 477, pp. 863–69.

    Article  CAS  Google Scholar 

  26. X. Li, W. Yu, J. Wang, and S. Xiong: Mater. Sci. Eng. A, 2018, vol. 736, pp. 219–27.

    Article  CAS  Google Scholar 

  27. C. Su, D. Li, J. Wang, R. Shi, A.A. Luo, X. Zeng, Z. Lin, and J. Chen: Mater. Sci. Eng. A, 2020, vol. 773, 138870.

    Article  CAS  Google Scholar 

  28. Y. Bai, B. Ye, X. Yu, L. Wang, B. Zhao, and X. Kong: Metall. Mater. Trans. A, 2022, vol. 53A, pp. 4258–71.

    Article  Google Scholar 

  29. Y. Bai, B. Ye, L. Wang, B. Zhao, X. Yu, Y. Lu, X. Kong, and W. Ding: Mater. Sci. Eng. A, 2021, vol. 802, 140655.

    Article  CAS  Google Scholar 

  30. Meridian Lightweight Technologies, https://www.meridian-mag.com/magnesium-die-casting/lightweight-alloys/. Accessed 24 June 2023

  31. G. Niu, J. Wang, J. Li, J. Ye, and J. Mao: Mater. Sci. Eng. A, 2022, vol. 833, 142544.

    Article  CAS  Google Scholar 

  32. J. Zhang, J. Wang, X. Qiu, D. Zhang, Z. Tian, X. Niu, D. Tang, and J. Meng: J. Alloy Compd., 2008, vol. 464, pp. 556–64.

    Article  CAS  Google Scholar 

  33. Z. Li, D. Li, W. Zhou, B. Hu, X. Zhao, J. Wang, M. Qin, J. Xu, and X. Zeng: J. Magn. Alloy., 2022, vol. 10, pp. 1857–67.

    Article  CAS  Google Scholar 

  34. J.K. Chen, H.Y. Hung, C.F. Wang, and N.K. Tang: Int. J. Heat Mass Transf., 2017, vol. 105, pp. 189–95.

    Article  CAS  Google Scholar 

  35. X. Tong, G. You, Y. Ding, H. Xue, Y. Wang, and W. Guo: Mater. Lett., 2018, vol. 229, pp. 261–64.

    Article  CAS  Google Scholar 

  36. C. Uher: Thermal Conductivity: Theory, Properties, and Applications, Kluwer Academic/Plenum Publishers, New York, 2004.

    Book  Google Scholar 

  37. R.W. Powell: Int. J. Heat Mass Transf., 1965, vol. 8, pp. 1033–45.

    Article  CAS  Google Scholar 

  38. G. Kresse and J. Furthmüller: Comput. Mater. Sci., 1996, vol. 6, pp. 15–50.

    Article  CAS  Google Scholar 

  39. X. Tao, Y. Ouyang, H. Liu, F. Zeng, Y. Feng, Y. Du, and Z. Jin: Comput. Mater. Sci., 2008, vol. 44, pp. 392–99.

    Article  CAS  Google Scholar 

  40. G. Kresse and J. Hafner: J. Phys. Condens. Matter, 1994, vol. 6, p. 8245.

    Article  CAS  Google Scholar 

  41. P.E. Blöchl: Phys. Rev. B, 1994, vol. 50, p. 17953.

    Article  Google Scholar 

  42. J.P. Perdew, K. Burke, and M. Ernzerhof: Phys. Rev. Lett., 1996, vol. 77, p. 3865.

    Article  CAS  PubMed  Google Scholar 

  43. O.L. Anderson: J. Phys. Chem. Solid, 1963, vol. 24, pp. 909–17.

    Article  CAS  Google Scholar 

  44. D.G. Cahill and R.O. Pohl: Annu. Rev. Phys. Chem., 1988, vol. 39, pp. 93–121.

    Article  CAS  Google Scholar 

  45. H. Liu and X. Zhao: Int. J. Heat Mass Transf., 2022, vol. 183, 122089.

    Article  CAS  Google Scholar 

  46. L. Nordheim: Ann. Phys., 1931, vol. 401, pp. 641–78.

    Article  Google Scholar 

  47. Y. Terada, K. Ohkubo, T. Mohri, and T. Suzuki: J. Appl. Phys., 1997, vol. 81, pp. 2263–68.

    Article  CAS  Google Scholar 

  48. X. Zheng, D.G. Cahill, P. Krasnochtchekov, R.S. Averback, and J.C. Zhao: Acta Mater., 2007, vol. 55, pp. 5177–85.

    Article  CAS  Google Scholar 

  49. F.Q. Meng, S.H. Zhou, R.T. Ott, M.J. Kramer, and R.E. Napolitano: Materialia, 2020, vol. 9, 100595.

    Article  CAS  Google Scholar 

  50. J.B. Vaney, A. Piarristeguy, V. Ohorodniichuck, O. Ferry, A. Pradel, E. Alleno, J. Monnier, E.B. Lopes, A.P. Gonçalves, G. Delaizir, C. Candolfi, A. Dauscher, and B. Lenoir: J. Mater. Chem. C, 2015, vol. 3, pp. 11090–98.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The National Key R&D Program (No. 2021YFB3701101) supported by the Ministry of Science and Technology of China is acknowledged. The National Natural Science Foundation of China (No. 52271009) is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bo Hu or Dejiang Li.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Yao, F., Hu, B. et al. Effect of Thickness-Dependent Sandwich Microstructure on the Thermal Conductivity of HPDC Mg–4Sm–2Al Alloy. Metall Mater Trans A 55, 1418–1434 (2024). https://doi.org/10.1007/s11661-024-07326-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-024-07326-7

Navigation