Skip to main content

Advertisement

Log in

Effect of Electropulsing-Assisted Ultrasonic Strengthening on Fatigue Properties of HIP Ti–6Al–4V Alloy

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Electropulsing-assisted ultrasonic surface strengthening (EUSS) is conducted in investigating the fatigue properties of HIP Ti–6Al–4V alloy. The results show that the minimum grain size reaches to nanometer scale and is accompanied by many dislocations. This should be attributed to the effective combination of the athermal effect of pulsed current and ultrasonic shock. Meanwhile, the microhardness value is increased to 530 HV and the hardening depth reaches to 300 μm. The compressive residual stress value drops to − 950 MPa in the thick plastic deformation layer and has an influence depth of 520 μm. Meanwhile, the smooth surface quality of the sample reduces the stress concentrations. The high compressive residual stress value decreases the effectiveness of the formation and propagation of crack initiation sites. Finally, the tensile strength of the sample treated by EUSS is increased to 1104 MPa, and the fatigue life is increased to 2.5 × 105 at 700 MPa and the critical fatigue strength at 107 cycles is increased to 600 MPa. Moreover, the thermal effect of the pulsed current effectively reduces the microscopic defects (crack source) in material surface-modified layer. Therefore, the fatigue crack initiation site originates from the interior of the sample, and rather than on the surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. M. Jackson: ACS, Atlanta, 2014, pp. 1–15.

  2. A.K. Sachdev, K. Kulkarni, Z.Z. Fang, R. Yang, and V. Girshov: JOM., 2012, vol. 64(5), pp. 553–65. https://doi.org/10.1007/s11837-012-0310-8.

    Article  CAS  Google Scholar 

  3. M. Wen, C. Wen, P. Hodgson, and Y.C. Li: Colloid Surf. B, 2014, vol. 116, pp. 658–65. https://doi.org/10.1016/j.colsurfb.2013.10.039.

    Article  CAS  Google Scholar 

  4. N. Khanna and J.P. Davim: Measurement, 2015, vol. 61, pp. 280–90. https://doi.org/10.1016/j.measurement.2014.10.059.

    Article  Google Scholar 

  5. I. Gurrappa: Mater. Charact., 2003, vol. 2–3, pp. 131–39. https://doi.org/10.1016/j.matchar.2003.10.006.

    Article  CAS  Google Scholar 

  6. K. Zhang, J. Mei, N. Wain, and X. Wu: Metall. Mater. Trans. A, 2010, vol. 41A, pp. 1033–45. https://doi.org/10.1007/s11661-009-0149-y.

    Article  CAS  Google Scholar 

  7. L. Zhu, X.T. Hu, R. Jiang, Y.D. Song, and S.D. Qu: Mater. Sci. Eng. A, 2019, vol. 739, pp. 214–24. https://doi.org/10.1016/j.msea.2018.10.031.

    Article  CAS  Google Scholar 

  8. L. Li, M. Kim, S. Lee, M. Bae, and D. Lee: Surf. Coat. Technol., 2016, vol. 307, pp. 517–24. https://doi.org/10.1016/j.surfcoat.2016.09.023.

    Article  CAS  Google Scholar 

  9. C.S. Liu, D.X. Liu, X.H. Zhang, D. Liu, A.M. Ma, N. Ao, and X.C. Xu: J. Mater. Sci. Technol., 2019, vol. 35, pp. 1555–62. https://doi.org/10.1016/j.jmst.2019.03.036.

    Article  CAS  Google Scholar 

  10. R.J. Sun, Z.G. Che, Z.W. Cao, S.K. Zou, J.F. Wu, W. Guo, and Y. Zhu: Surf. Coat. Technol., 2020, vol. 383, p. 125284. https://doi.org/10.1016/j.surfcoat.2019.125284.

    Article  CAS  Google Scholar 

  11. C.S. Liu, D.X. Liu, X.H. Zhang, N. Ao, X.C. Xu, D. Liu, and J. Yang: Int. J. Fatigue, 2019, vol. 125, pp. 249–60. https://doi.org/10.1016/j.ijfatigue.2019.03.042.

    Article  CAS  Google Scholar 

  12. Z.Q. Liu, Z. Wang, C.F. Gao, R.P. Liu, Z.Y. Xiao, and J. Sanderson: Mater. Sci. Eng. A, 2022, vol. 833, p. 142352. https://doi.org/10.1016/j.msea.2021.142352.

    Article  CAS  Google Scholar 

  13. O. Unal, E. Maleki, I. Karademir, F. Husem, Y. Efe, and T. Das: Int. J. Fatigue, 2022, vol. 155, p. 106613. https://doi.org/10.1016/j.ijfatigue.2021.106613.

    Article  CAS  Google Scholar 

  14. H.B. Wang, G.L. Song, and G.Y. Tang: J. Alloy Compd., 2016, vol. 681, pp. 146–56. https://doi.org/10.1016/j.jallcom.2016.04.067.

    Article  CAS  Google Scholar 

  15. X.K. Luo, N. Dang, and X. Wang: Int. J. Fatigue, 2021, vol. 153, p. 106465. https://doi.org/10.1016/j.ijfatigue.2021.106465.

    Article  CAS  Google Scholar 

  16. H. Zhang, Z.C. Ren, J. Liu, J.Y. Zhao, Z.K. Liu, D. Lin, and R. Zhang: J. Alloy Compd., 2019, vol. 802, pp. 573–82. https://doi.org/10.1016/j.jallcom.2019.06.156.

    Article  CAS  Google Scholar 

  17. S.G. Qu, Z.J. Ren, X.F. Hu, F.Q. Lai, F.J. Sun, X.Q. Li, and C. Yang: Surf. Coat. Technol., 2021, vol. 421, p. 127408. https://doi.org/10.1016/j.surfcoat.2021.127408.

    Article  CAS  Google Scholar 

  18. S.K. Vajpai, B. Sharma, M. Ota, and K. Ameyama: Mater. Sci. Eng. A, 2018, vol. 736, pp. 323–28. https://doi.org/10.1016/j.msea.2018.09.002.

    Article  CAS  Google Scholar 

  19. C.H.V. Satyanarayanaraju, R. Dixit, P. Miryalkar, S. Karunanidhi, A. AshokKumar, J. NagaLakshmi, U. Ramakrishna, R. Mounika, and P. Saipavan: Mater. Today. Proc., 2019, vol. 18, pp. 2409–14. https://doi.org/10.1016/j.matpr.2019.07.088.

    Article  CAS  Google Scholar 

  20. C.L. Qiu, X.H. Wu, J.F. Mei, P. Andrews, and W. Voice: J. Alloy Compd., 2013, vol. 578, pp. 454–64. https://doi.org/10.1016/j.jallcom.2013.06.045.

    Article  CAS  Google Scholar 

  21. X.L. Xu, Q.Y. Li, J. Wang, X.P. Ren, and H.L. Hou: Mater. Charact., 2021, vol. 180, p. 111399. https://doi.org/10.1016/j.matchar.2021.111399.

    Article  CAS  Google Scholar 

  22. G.W. Zhao, J.F. Fan, H. Zhang, Q. Zhang, J. Yang, H.B. Dong, and B.S. Xu: Mater. Sci. Eng. A, 2018, vol. 731, pp. 54–60. https://doi.org/10.1016/j.msea.2018.05.112.

    Article  CAS  Google Scholar 

  23. Y.D. Ye, S.Z. Kure-Chu, Z.Y. Sun, X.P. Li, H.B. Wang, and G.Y. Tang: Mater. Des., 2018, vol. 149, pp. 214–27. https://doi.org/10.1016/j.matdes.2018.04.027.

    Article  CAS  Google Scholar 

  24. L. Emanuelli, A. Molinari, L. Facchini, E. Sbettega, S. Carmignato, M. Bandini, and M. Benedetti: Int. J. Fatigue, 2022, vol. 162, p. 107009. https://doi.org/10.1016/j.ijfatigue.2022.107009.

    Article  CAS  Google Scholar 

  25. S. Huang, J.X. Zhao, J. Sheng, X.K. Meng, E. Boateng, D.H. Ma, J. Li, and J.Z. Zhou: Int. J. Fatigue, 2020, vol. 131, p. 105335. https://doi.org/10.1016/j.ijfatigue.2019.105335.

    Article  CAS  Google Scholar 

  26. H. Ye, X. Sun, Y. Liu, X.X. Rao, and Q. Gu: Surf. Coat. Technol., 2019, vol. 372, pp. 288–98. https://doi.org/10.1016/j.surfcoat.2019.05.035.

    Article  CAS  Google Scholar 

  27. Y. Wang and Z.L. Su: Theoret. Appl. Fract. Mech., 2021, vol. 111, p. 102849. https://doi.org/10.1016/j.tafmec.2020.102849.

    Article  CAS  Google Scholar 

  28. K.S. Chan, M.P. Enright, J.P. Moody, P.J. Golden, R. Chandra, and A.C. Pentz: Int. J. Fatigue, 2010, vol. 32, pp. 815–23. https://doi.org/10.1016/j.ijfatigue.2009.07.004.

    Article  CAS  Google Scholar 

  29. A.I. Dekhtyar, B.N. Mordyuk, D.G. Savvakin, V.I. Bondarchuk, I.V. Moiseeva, and N.I. Khripta: Mater. Sci. Eng. A, 2015, vol. 641, pp. 348–59. https://doi.org/10.1016/j.msea.2015.06.072.

    Article  CAS  Google Scholar 

  30. W.D. Zhao, D.X. Liu, X.H. Zhang, Y. Zhou, R.X. Zhang, H. Zhang, and C. Ye: Int. J. Fatigue, 2019, vol. 121, pp. 30–38. https://doi.org/10.1016/j.ijfatigue.2018.11.017.

    Article  CAS  Google Scholar 

  31. G. Li, F. Meng, and W. Zhang: JOM, 2023, vol. 75, pp. 1739–49. https://doi.org/10.1007/s11837-023-05776-9.

    Article  Google Scholar 

  32. G. Li, X. Xiao, W. Zhang, and D. Song: J. Mater. Process. Technol., 2023, vol. 316, p. 117942. https://doi.org/10.1016/j.jmatprotec.2023.117942.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study were funded by Doctoral Research Fund of Northeast Electric Power University (BSJXM-2019217) and Science and Technology Research Project of Jilin Provincial Department of Education (JJKH20210086KJ)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Li.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, G., Xiao, X., Zhang, W. et al. Effect of Electropulsing-Assisted Ultrasonic Strengthening on Fatigue Properties of HIP Ti–6Al–4V Alloy. Metall Mater Trans A 54, 3912–3927 (2023). https://doi.org/10.1007/s11661-023-07142-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-023-07142-5

Navigation