Skip to main content
Log in

Advanced Characterization of Precipitation and Microstructure Heterogeneity in X70 Steel

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The spatial distribution of precipitates and microstructure heterogeneity in a vacuum induction melted X70 steel rolled at a pilot-scale facility were investigated using advanced characterization techniques. Electron Backscatter Diffraction was used to identify areas with low and high Kernel Average Misorientation (KAM). A newly developed procedure utilizing a Plasma Focused Ion Beam microscope was used to lift-out plane view sections of small and large grains within the areas of low and high KAM values. Quantitative analysis by transmission electron microscopy (TEM) revealed a uniformly dispersed set of core-cap structure precipitates varying between 30 and 70 nm in diameter. The core was enriched in Ti and N, while the shell typically contained Nb and C. Strain-induced precipitation of fine (5 to 20 nm) NbC particles on dislocations was not observed by TEM and 3D atom probe tomography (APT). The absence of strain-induced precipitation is believed to be due to the depletion of Nb from solid solution as the result of the core-cap structure of NbC on pre-existing TiN particles. The similarity of precipitates in each location suggests that the local features (strain, grain size) in the final microstructure arise from phase transformations during cooling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. T. Gladman: The Physical Metallurgy of Microalloyed Steels, 1st ed. Maney for the Institute of Materials, Abington, 1997, pp. 1–6.

    Google Scholar 

  2. A.T. Davenport, L.C. Brossard, and R.E. Miner: JOM, 1975, vol. 27, pp. 21–27.

    Article  Google Scholar 

  3. M. Charleux, W.J. Poole, M. Militzer, and A. Deschamps: Metall. Mater. Trans. A, 2001, vol. 32, pp. 1635–47.

    Article  Google Scholar 

  4. D.B. Rosado, W.D. Waele, D. Vanderschueren, S. Hertelé, in 5th International Conference on Sustainable Construction and Design, vol. 4 (2013)

  5. V.M.H. Konstrukcijska: Mater. Tehnol., 2011, vol. 45, pp. 295–301.

    Google Scholar 

  6. H.J. Kong and C.H. Liu: Technologies, 2018, vol. 6, p. 36.

    Article  Google Scholar 

  7. C. Klinkenberg, K. Hulka, and W. Bleck: Steel Res. Int., 2004, vol. 75, pp. 744–52.

    Article  CAS  Google Scholar 

  8. S.L. Liang, X. Wang, C. Andrei, and H.S. Zurob: Mater. Sci. Eng. A, 2021, vol. 802, 140447.

    Article  CAS  Google Scholar 

  9. S.L. Liang, X. Wang, and H.S. Zurob: Mater. Sci. Eng. A, 2020, vol. 772, 138748.

    Article  CAS  Google Scholar 

  10. B. Dutta, E.J. Palmiere, and C.M. Sellars: Acta Mater., 2001, vol. 49, pp. 785–94.

    Article  CAS  Google Scholar 

  11. P. Gong, E.J. Palmiere, and W. Mark Rainforth: Mater. Charact., 2017, vol. 124, pp. 83–89.

    Article  CAS  Google Scholar 

  12. D. Poddar, P. Cizek, H. Beladi, and P.D. Hodgson: Acta Mater., 2014, vol. 80, pp. 1–15.

    Article  CAS  Google Scholar 

  13. H.K. Dong, H. Chen, W. Wang, Y.J. Zhang, G. Miyamoto, T. Furuhara, C. Zhang, Z.G. Yang, and S.V.D. Zwaag: Acta Mater., 2018, vol. 158, pp. 167–79.

    Article  CAS  Google Scholar 

  14. S. Clark, V. Janik, A. Rijkenberg, and S. Sridhar: Mater. Charact., 2016, vol. 115, pp. 83–89.

    Article  CAS  Google Scholar 

  15. A.T. Davenport, F.G. Berry, and R.W.K. Honeycombe: Met. Sci. J., 1968, vol. 2, pp. 104–06.

    Article  CAS  Google Scholar 

  16. R. Okamoto, A. Borgenstam, and J. Ågren: Acta Mater., 2010, vol. 58, pp. 4783–90.

    Article  CAS  Google Scholar 

  17. H.J. Kestenbach, S.S. Campos, and E.V. Morales: Mater. Sci. Technol., 2006, vol. 22, pp. 615–26.

    Article  CAS  Google Scholar 

  18. F.Z. Bu, X.M. Wang, S.W. Yang, C.J. Shang, and R.D.K. Misra: Mater. Sci. Eng. A, 2015, vol. 620, pp. 22–29.

    Article  Google Scholar 

  19. V.S.A. Challa, W.H. Zhou, R.D.K. Misra, R. O’Malley, and S.G. Jansto: Mater. Sci. Eng. A, 2014, vol. 595, pp. 143–53.

    Article  CAS  Google Scholar 

  20. Z. Jia, R.D.K. Misra, R. O’malley, and S.J. Jansto: Mater. Sci. Eng. A, 2011, vol. 528, pp. 7077–83.

    Article  CAS  Google Scholar 

  21. J.I. Omale, E.G. Ohaeri, J.A. Szpunar, M. Arafin, and F. Fateh: Mater. Charact., 2019, vol. 147, pp. 453–63.

    Article  CAS  Google Scholar 

  22. J.I. Omale, E.G. Ohaeri, A.A. Tiamiyu, M. Eskandari, K.M. Mostafijur, and J.A. Szpunar: Mater. Sci. Eng. A, 2017, vol. 703, pp. 477–85.

    Article  CAS  Google Scholar 

  23. S.I. Lee, S.Y. Lee, S.G. Lee, H.G. Jung, and B. Hwang: Met. Mater. Int., 2018, vol. 24, pp. 1221–31.

    Article  CAS  Google Scholar 

  24. L.-H. Lee, Yu. Chia-Hao, C.-Y. Wei, P.-C. Lee, J.-S. Huang, and C.-Y. Wen: Ultramicroscopy, 2019, vol. 197, pp. 95–9.

    Article  CAS  Google Scholar 

  25. C. Li, G. Habler, L.C. Baldwin, and R. Abart: Ultramicroscopy, 2018, vol. 184, pp. 310–17.

    Article  CAS  Google Scholar 

  26. T. Malis, S.C. Cheng, and R.F. Egerton: J. Electron Microsc. Technol., 1988, vol. 8, pp. 193–200.

    Article  CAS  Google Scholar 

  27. K. Thompson, D. Lawrence, D.J. Larson, J.D. Olson, T.F. Kelly, and B. Gorman: Ultramicroscopy, 2007, vol. 107, pp. 131–39.

    Article  CAS  Google Scholar 

  28. M.K. Miller: Atom Probe Tomography: Analysis at the Atomic Level, 1st ed. Springer, New York, 2012, pp. 157–97.

    Google Scholar 

  29. B. Gault, M.P. Moody, J.M. Cairney, and S.P. Ringer: Atom Probe Microscopy, 1st ed. Springer, New York, 2012, pp. 157–309.

    Google Scholar 

  30. S. Zaefferer, P. Romano, and F. Friedel: J. Microsc., 2008, vol. 230, pp. 499–508.

    Article  CAS  Google Scholar 

  31. Y.-W. Chen, Y.-T. Tsai, P.-Y. Tung, S.-P. Tsai, C.-Y. Chen, S.-H. Wang, and J.-R. Yang: Mater. Charact., 2018, vol. 139, pp. 49–58.

    Article  CAS  Google Scholar 

  32. H. Hu, H.S. Zurob, G. Xu, D. Embury, and G.R. Purdy: Mater. Sci. Eng. A, 2015, vol. 626, pp. 34–40.

    Article  CAS  Google Scholar 

  33. W. Bleck and E. Ratte: Fundamentals of Cold Formable HSLA Steels, TMS, Pittsburgh, 2006, pp. 551–64.

    Google Scholar 

  34. X. Ma, C. Miao, B. Langelier, and S. Subramanian: Mater. Des., 2017, vol. 132, pp. 244–49.

    Article  CAS  Google Scholar 

  35. A.J. Craven, K. He, L.A.J. Garvie, and T.N. Baker: Acta Mater., 2000, vol. 48, pp. 3857–68.

    Article  CAS  Google Scholar 

  36. S.G. Hong, K.B. Kang, and C.G. Park: Scr. Mater., 2002, vol. 46, pp. 163–68.

    Article  CAS  Google Scholar 

  37. M.J. Leap and E.L. Brown: Scr. Mater., 2002, vol. 47, pp. 793–97.

    Article  CAS  Google Scholar 

  38. Z. Chen, M.H. Loretto, and R.C. Cochrane: Mater. Sci. Technol., 1987, vol. 3, pp. 836–44.

    Article  CAS  Google Scholar 

  39. M. Grujicic, I.J. Wang, and W.S. Owen: Calphad, 1988, vol. 12, pp. 261–75.

    Article  CAS  Google Scholar 

  40. H.S. Zurob, C.R. Hutchinson, Y. Brechet, and G. Purdy: Acta Mater., 2002, vol. 50, pp. 3077–94.

    Article  Google Scholar 

  41. X. Li, P. Wu, R. Yang, S. Zhao, S. Zhang, S. Chen, X. Cao, and X. Wang: Mater. Des., 2017, vol. 115, pp. 165–69.

    Article  CAS  Google Scholar 

  42. Q. Yu, Z. Wang, X. Liu, and G. Wang: Mater. Sci. Eng. A, 2004, vol. 379, pp. 384–90.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the sponsorships from EVRAZ North America steel corporations through an NSERC CRD Grant. The authors are grateful to Dr. Fateh Fazeli and CanmetMATERIALS (Hamilton, Canada) for casting and hot-rolling the material. The characterization work was carried out at the Canadian Centre for Electron Microscopy, a national facility supported by the Canada Foundation for Innovation under the Major Science Initiative program, NSERC and McMaster University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hatem Zurob.

Ethics declarations

Competing Interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 165 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, C., Gaudet, M.J., Su, J. et al. Advanced Characterization of Precipitation and Microstructure Heterogeneity in X70 Steel. Metall Mater Trans A 54, 768–775 (2023). https://doi.org/10.1007/s11661-022-06930-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-022-06930-9

Navigation