Skip to main content
Log in

The Scavenging Effect of Different Rare-Earth Elements in the Low-Purity Zr50Cu40Al10 Alloy

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Glass-forming alloys are very sensitive to oxygen contaminations. Here, the oxygen-scavenging effect of five rare-earth elements (REEs) was studied when added to the Zr50Cu40Al10 alloy, synthesized from commercially available zirconium. The effects of precise REEs additions (Y, Sc, Lu, Gd, Nd) with respect to the measured oxygen content, based on the stoichiometric relationship in the M2O3 oxide, are reported. Additionally, the influence of double and triple REE-to-oxygen ratios on the critical diameter (Dc) and other glass-forming ability (GFA) indicators were investigated. To evaluate the GFA and phase transformations during heating, differential thermal analysis was performed along with neutron diffraction. The combination of these two techniques allowed to identify crystallization products and distinguish the differences in phase transformations of low and high-oxygen-content alloys. Microstructural analysis was carried out by means of electron microscopy (SEM, STEM), supported by X-ray diffraction. The best oxygen scavengers were found to be rare earths that form cubic sesquioxides, i.e., Y, Sc, and Lu, allowing to increase Dc in the high-oxygen Zr50Cu40Al10 alloy from 2.5 mm up to 8 mm (double-stoichiometric concentration of Y-to-oxygen). Our results indicate that low-purity alloys can be easily vitrified, highlighting their potential for wide commercialization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. E.D. Zanotto and J.C. Mauro: J. Non. Cryst. Solids, 2017, vol. 471, pp. 490–95. https://doi.org/10.1016/j.jnoncrysol.2017.05.019.

    Article  CAS  Google Scholar 

  2. J. Zhao, Z. Tang, K.F. Kelton, C.T. Liu, P.K. Liaw, A. Inoue, X. Shen, S. Pan, M.L. Johnson, G. Chen, and C. Fan: Intermetallics, 2017, vol. 82, pp. 53–58. https://doi.org/10.1016/j.intermet.2016.11.010.

    Article  CAS  Google Scholar 

  3. T. Kozieł, K. Pajor, G. Cios, and P. Bała: Trans. Nonferrous Met. Soc. China, 2019, vol. 29, pp. 1036–45. https://doi.org/10.1016/S1003-6326(19)65012-0.

    Article  Google Scholar 

  4. T. Kozieł, K. Pajor, and Ł Gondek: J. Mater. Res. Technol., 2020, vol. 9, pp. 13502–08. https://doi.org/10.1016/j.jmrt.2020.09.082.

    Article  CAS  Google Scholar 

  5. H.S. Chen: Acta Metall., 1974, vol. 22, pp. 1505–11. https://doi.org/10.1016/0001-6160(74)90112-6.

    Article  CAS  Google Scholar 

  6. A. Inoue: Acta Mater., 2000, vol. 48, pp. 279–306. https://doi.org/10.1016/S1359-6454(99)00300-6.

    Article  CAS  Google Scholar 

  7. M.M. Khan, A. Nemati, Z.U. Rahman, U.H. Shah, H. Asgar, and W. Haider: Crit. Rev. Solid State Mater. Sci., 2018, vol. 43, pp. 233–68. https://doi.org/10.1080/10408436.2017.1358149.

    Article  CAS  Google Scholar 

  8. E. Axinte: Mater. Des., 2012, vol. 35, pp. 518–56. https://doi.org/10.1016/j.matdes.2011.09.028.

    Article  CAS  Google Scholar 

  9. J. Cheng, G. Chen, Q. Zeng, L. Yun, and F. Xu: J. Iron Steel Res. Int., 2016, vol. 23, pp. 78–82. https://doi.org/10.1016/S1006-706X(16)30016-4.

    Article  Google Scholar 

  10. P. Błyskun, T. Kozieł, K. Pajor, P. Maj, and T. Kulik: J. Non. Cryst. Solids, 2019, vol. 509, pp. 80–87. https://doi.org/10.1016/j.jnoncrysol.2019.01.026.

    Article  CAS  Google Scholar 

  11. X.H. Lin, W.L. Johnson, and W.K. Rhim: Mater. Trans. JIM., 1997, vol. 38, pp. 473–77.

    Article  CAS  Google Scholar 

  12. Y. Yokoyama, T. Shinohara, K. Fukaura, and A. Inoue: Mater. Trans., 2004, vol. 45, pp. 1819–23. https://doi.org/10.2320/matertrans.45.1819.

    Article  CAS  Google Scholar 

  13. V. Keryvin, C. Bernard, J.C. Sanglebœuf, Y. Yokoyama, and T. Rouxel: J. Non. Cryst. Solids, 2006, vol. 352, pp. 2863–68. https://doi.org/10.1016/j.jnoncrysol.2006.02.102.

    Article  CAS  Google Scholar 

  14. Z.P. Lu, H. Bei, Y. Wu, G.L. Chen, E.P. George, and C.T. Liu: Appl. Phys. Lett., 2008, vol. 92, pp. 23–25. https://doi.org/10.1063/1.2828981.

    Article  CAS  Google Scholar 

  15. K.T. Park, T.H. Lee, N.C. Jo, H.H. Nersisyan, B.S. Chun, H.H. Lee, and J.H. Lee: J. Nucl. Mater., 2013, vol. 436, pp. 130–38. https://doi.org/10.1016/j.jnucmat.2013.01.310.

    Article  CAS  Google Scholar 

  16. R.A. Robie, B.S. Hemingway, J.R. Fisher: Thermodynamic Properties of Minerals and Related Substances at 298.15K and 1 Bar Pressure and at Higher Temperatures, UNITED STATES GOVERNMENT PRINTING OFFICE, Washington, 1978. https://doi.org/10.3133/b1452.

  17. M. Zinkevich: Prog. Mater. Sci., 2007, vol. 52, pp. 597–647. https://doi.org/10.1016/j.pmatsci.2006.09.002.

    Article  CAS  Google Scholar 

  18. A.A. Kündig, D. Lepori, A.J. Perry, S. Rossmann, A. Blatter, A. Dommann, and P.J. Uggowitzer: Mater. Trans., 2002, vol. 43, pp. 3206–10. https://doi.org/10.2320/matertrans.43.3206.

    Article  Google Scholar 

  19. K. Pajor, T. Kozieł, G. Cios, P. Błyskun, P. Bała, and A. Zielińska-Lipiec: J. Non. Cryst. Solids, 2018, vol. 496, pp. 42–47. https://doi.org/10.1016/j.jnoncrysol.2018.05.034.

    Article  CAS  Google Scholar 

  20. Y. Zhang, M.X. Pan, D.Q. Zhao, R.J. Wang, and W.H. Wang: Mater. Trans. JIM, 2000, vol. 41, pp. 1410–14.

    Article  CAS  Google Scholar 

  21. J. Luo, H. Duan, C. Ma, S. Pang, and T. Zhang: Mater. Trans., 2006, vol. 47, pp. 450–53. https://doi.org/10.2320/matertrans.47.450.

    Article  CAS  Google Scholar 

  22. J. Chen, Y. Zhang, J.P. He, K.F. Yao, B.C. Wei, and G.L. Chen: Scr. Mater., 2006, vol. 54, pp. 1351–55. https://doi.org/10.1016/j.scriptamat.2005.12.002.

    Article  CAS  Google Scholar 

  23. J. Zhu, C. Wang, J. Han, S. Yang, G. Xie, H. Jiang, Y. Chen, and X. Liu: Intermetallics, 2018, vol. 92, pp. 55–61. https://doi.org/10.1016/j.intermet.2017.08.018.

    Article  CAS  Google Scholar 

  24. K. Zhou, Y. Liu, S. Pang, and T. Zhang: J. Alloys Compd., 2016, vol. 656, pp. 389–94. https://doi.org/10.1016/j.jallcom.2015.09.254.

    Article  CAS  Google Scholar 

  25. S. Lu, S. Sun, K. Li, H. Li, X. Huang, and G. Tu: J. Alloys Compd., 2019, vol. 799, pp. 501–12. https://doi.org/10.1016/j.jallcom.2019.05.219.

    Article  CAS  Google Scholar 

  26. H.-P. Cui, W.-D. Zhang, and C.-L. Song: Chin. J. Mech. Eng., 2021, https://doi.org/10.21203/rs.3.rs-349393/v1.

    Article  Google Scholar 

  27. F. Jiang, Z.J. Wang, Z.B. Zhang, and J. Sun: Scr. Mater., 2005, vol. 53, pp. 487–91. https://doi.org/10.1016/j.scriptamat.2005.05.003.

    Article  CAS  Google Scholar 

  28. K. Zhou, C. Chen, Y. Liu, S. Pang, N. Hua, W. Yang, and T. Zhang: Intermetallics, 2017, vol. 90, pp. 81–89. https://doi.org/10.1016/j.intermet.2017.07.007.

    Article  CAS  Google Scholar 

  29. L. Deng, B. Zhou, H. Yang, X. Jiang, B. Jiang, and X. Zhang: J. Alloys Compd., 2015, vol. 632, pp. 429–34. https://doi.org/10.1016/j.jallcom.2015.01.036.

    Article  CAS  Google Scholar 

  30. Y. Ke, F. Xinhui, L. Bing, L. Yanhong, and W. Xin: Vacuum, 2021, vol. 187, 110078https://doi.org/10.1016/j.vacuum.2021.110078.

    Article  CAS  Google Scholar 

  31. X. Xu, L.Y. Chen, G.Q. Zhang, L.N. Wang, and J.Z. Jiang: Intermetallics, 2007, vol. 15, pp. 1066–70. https://doi.org/10.1016/j.intermet.2006.12.010.

    Article  CAS  Google Scholar 

  32. X.I.E. Zhiwei, Z. Yongzhang, Y. Yuanzheng, C. Xianzhao, T.A.O. Pingjun, Z. Xie, Y. Zhang, Y. Yang, X. Chen, and P. Tao: Rare Met., 2010, vol. 29, pp. 444–50. https://doi.org/10.1007/s12598-010-0147-7.

    Article  CAS  Google Scholar 

  33. W.H. Wang: Prog. Mater. Sci., 2007, vol. 52, pp. 540–96. https://doi.org/10.1016/j.pmatsci.2006.07.003.

    Article  CAS  Google Scholar 

  34. N. Chen, L. Martin, D.V. Luzguine-Luzgin, and A. Inoue: Materials, 2010, vol. 3, pp. 5320–39. https://doi.org/10.3390/ma3125320.

    Article  CAS  Google Scholar 

  35. X.Y. Liu: J. Chem. Phys., 2000, vol. 112, pp. 9949–55. https://doi.org/10.1063/1.481644.

    Article  CAS  Google Scholar 

  36. K. Pajor, T. Kozieł, B. Rutkowski, G. Cios, P. Błyskun, D. Tyrała, P. Bała, and A. Zielińska-Lipiec: Metall. Mater. Trans. A, 2020, vol. 51A, pp. 4563–71. https://doi.org/10.1007/s11661-020-05875-1.

    Article  CAS  Google Scholar 

  37. Z. Long, W. Liu, M. Zhong, Y. Zhang, M. Zhao, G. Liao, and Z. Chen: J. Therm. Anal. Calorim., 2018, vol. 132, pp. 1645–60. https://doi.org/10.1007/s10973-018-7050-0.

    Article  CAS  Google Scholar 

  38. Ł Rakoczy, B. Rutkowski, M. Grudzień-Rakoczy, R. Cygan, W. Ratuszek, and A. Zielińska-Lipiec: Materials, 2020, vol. 13, pp. 1–24. https://doi.org/10.3390/ma13194452.

    Article  CAS  Google Scholar 

  39. J. Łażewski, M. Sternik, P.T. Jochym, J. Kalt, S. Stankov, A.I. Chumakov, J. Göttlicher, R. Rüffer, T. Baumbach, and P. Piekarz: Inorg. Chem., 2021, vol. 60, pp. 9571–79. https://doi.org/10.1021/acs.inorgchem.1c00708.

    Article  CAS  Google Scholar 

  40. K.K. Song, S. Pauly, Y. Zhang, P. Gargarella, R. Li, N.S. Barekar, U. Kühn, M. Stoica, and J. Eckert: Acta Mater., 2011, vol. 59, pp. 6620–30. https://doi.org/10.1016/j.actamat.2011.07.017.

    Article  CAS  Google Scholar 

  41. R. Ramachandramoorthy, F. Yang, D. Casari, M. Stolpe, M. Jain, J. Schwiedrzik, J. Michler, J.J. Kruzic, and J.P. Best: J. Mater. Res., 2021, vol. 36, pp. 2325–36. https://doi.org/10.1557/s43578-021-00187-5.

    Article  CAS  Google Scholar 

  42. K.J. Laws, B. Gun, and M. Ferry: Metall. Mater. Trans. A, 2009, vol. 40A, pp. 2377–87. https://doi.org/10.1007/s11661-009-9929-7.

    Article  CAS  Google Scholar 

  43. P. Błyskun, M. Kowalczyk, G. Cieślak, and T. Kulik: J. Non. Cryst. Solids, 2019, vol. 515, pp. 106–12. https://doi.org/10.1016/j.jnoncrysol.2019.04.018.

    Article  CAS  Google Scholar 

  44. C. Suryanarayana and A. Inoue: Bulk Metallic Glasses, 2nd ed. CRC Press, Boca Raton, 2017, pp. 9–34.

    Google Scholar 

  45. Y. Chen, C. Tang, and J.Z. Jiang: Prog. Mater. Sci., 2021, vol. 121, 100799https://doi.org/10.1016/j.pmatsci.2021.100799.

    Article  CAS  Google Scholar 

  46. A. Inoue and A. Takeuchi: Acta Mater., 2011, vol. 59, pp. 2243–67. https://doi.org/10.1016/j.actamat.2010.11.027.

    Article  CAS  Google Scholar 

  47. W. Zhou, Y. Meng, F. Duan, W. Huang, J. Yao, J. Pan, Y. Wang, and Y. Li: Intermetallics, 2021, vol. 129, 107055https://doi.org/10.1016/j.intermet.2020.107055.

    Article  CAS  Google Scholar 

  48. D. Wang, H. Tan, and Y. Li: Acta Mater., 2005, vol. 53, pp. 2969–79. https://doi.org/10.1016/j.actamat.2005.03.012.

    Article  CAS  Google Scholar 

  49. Y.F. Xu, L.P.H. Jeurgens, L.C. Lin, S. Ma, S.L. Zhu, Y. Huang, Y.C. Liu, J.W. Qiao, and Z.M. Wang: Corros. Sci., 2021, vol. 183, 109309https://doi.org/10.1016/j.corsci.2021.109309.

    Article  CAS  Google Scholar 

  50. O. Baulin, T. Douillard, D. Fabrègue, M. Perez, J.M. Pelletier, and M. Bugnet: Mater. Des., 2019, vol. 168, 107660https://doi.org/10.1016/j.matdes.2019.107660.

    Article  CAS  Google Scholar 

  51. The Materials Project. Materials Data on ZrAlCu2 by Materials Project (United States 2020), https://doi.org/10.17188/1207352. Accessed 31 Jan 2022

  52. The Materials Project. Materials Data on Zr6Al7Cu16 by Materials Project (United States 2020), Web. https://doi.org/10.17188/1733902. Accessed 31 Jan 2022

  53. J.L. Soubeyroux, N. Claret, and J.M. Pelletier: Mater. Sci. Forum., 2001, vol. 360–362, pp. 37–42. https://doi.org/10.4028/www.scientific.net/msf.360-362.37.

    Article  Google Scholar 

  54. J. Eckert, N. Mattern, M. Zinkevitch, and M. Seidel: Mater. Trans. JIM, 1998, vol. 39, pp. 623–32. https://doi.org/10.2320/matertrans1989.39.623.

    Article  CAS  Google Scholar 

  55. H. Okamoto: J. Phase Equilibria Diffus., 2012, vol. 33, pp. 417–18. https://doi.org/10.1007/s11669-012-0077-1.

    Article  CAS  Google Scholar 

  56. S. Zhang, T. Ichitsubo, Y. Yoshihiko, K. Miyagi, and E. Matsubara: Mater. Sci. Forum, 2007, vol. 561, pp. 1391–95.

    Google Scholar 

  57. S. Zhang, T. Ichitsubo, Y. Yokoyama, T. Yamamoto, E. Matsubara, and A. Inoue: Mater. Trans., 2009, vol. 50, pp. 1340–45. https://doi.org/10.2320/matertrans.MBW200833.

    Article  CAS  Google Scholar 

  58. K. Kosiba and S. Pauly: Sci. Rep., 2017, vol. 7, p. 2151. https://doi.org/10.1038/s41598-017-02376-x.

    Article  CAS  Google Scholar 

  59. Q. Zheng, Y. Zhang, M. Montazerian, O. Gulbiten, J.C. Mauro, E.D. Zanotto, and Y. Yue: Chem. Rev., 2019, vol. 119, pp. 7848–7939. https://doi.org/10.1021/acs.chemrev.8b00510.

    Article  CAS  Google Scholar 

  60. Q. Cheng, X. Han, I. Kaban, I. Soldatov, W.H. Wang, Y.H. Sun, and J. Orava: Scr. Mater., 2020, vol. 183, pp. 61–65. https://doi.org/10.1016/j.scriptamat.2020.03.028.

    Article  CAS  Google Scholar 

  61. T. Yamamoto, Y. Yokoyama, T. Ichitsubo, H. Kimura, E. Matsubara, and A. Inoue: J. Mater. Res., 2010, vol. 25, pp. 793–800. https://doi.org/10.1557/JMR.2010.0105.

    Article  CAS  Google Scholar 

  62. N.D. de Campos Neto, F.S. Pereira, S.G. Antonio, Y. Guo, A.J. Clarke, M.J. Kaufman, and M.F. de Oliveira: Mater. Charact., 2019, vol. 158, pp. 1–7. https://doi.org/10.1016/j.matchar.2019.109932.

    Article  CAS  Google Scholar 

  63. Q. Zhang, W. Zhang, and A. Inoue: Mater. Trans., 2006, vol. 47, pp. 2804–07. https://doi.org/10.2320/matertrans.47.2804.

    Article  CAS  Google Scholar 

  64. Q. Hu, M.W. Fu, and X.R. Zeng: Mater. Des., 2014, vol. 64, pp. 301–06. https://doi.org/10.1016/j.matdes.2014.07.057.

    Article  CAS  Google Scholar 

  65. T. Schleid and G. Meyer: J. Less-Common Met., 1989, vol. 149, pp. 73–80. https://doi.org/10.1016/0022-5088(89)90472-4.

    Article  Google Scholar 

  66. E.R. Andrievskaya, V.V. Kovylyaev, L.M. Lopato, A.V. Ragulya, and A.V. Shevchenko: Inorg. Mater., 2000, vol. 36, pp. 612–19. https://doi.org/10.1007/BF02757964.

    Article  CAS  Google Scholar 

  67. A. Shevchenko, L. Lopato, and I. Kiryakova: Inorg. Mater., 1984, vol. 20, pp. 1731–36.

    Google Scholar 

  68. G.T. Adylov, V.G. Voronov, and L. Sigalov: Inorg. Mater., 1987, vol. 23, pp. 1644–46.

    Google Scholar 

  69. D. Taylor: Trans. J. Br. Ceram. Soc., 1984, vol. 83, pp. 92–98.

    CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Ministry of Science and Higher Education Republic of Poland under Contract No. 16.16.110.663. K.W. was supported by the EMPAPOSTDOCS-II program that has received funding from the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie Grant Agreement Number 754364.

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krzysztof Pajor.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

See Figures A1, A2, A3, A4, and A5 and Table A1.

Fig. A1
figure 12

SEM-BSE images of Zr50Cu40Al10 alloy doped with scandium with stoichiometric 2/3 (a) Dc = 4 mm and (b) D = 5 mm, double-stoichiometric 4/3 (c) Dc = 4 mm and (d) D = 5 mm and triple-stoichiometric 6/3 (e) Dc = 5 mm and (f) D = 6 mm

Fig. A2
figure 13

SEM-BSE images of Zr50Cu40Al10 alloy doped with lutetium with stoichiometric 2/3 (a) Dc = 3 mm and (b) D = 4 mm, double-stoichiometric 4/3 (c) Dc = 5 mm and (d) D = 6 mm and triple-stoichiometric 6/3 (e) Dc = 6 mm and (f) D = 7 mm

Fig. A3
figure 14

SEM-BSE images of Zr50Cu40Al10 alloy doped with neodymium with stoichiometric 2/3 (a) 3 mm, double-stoichiometric 4/3 (b) 3 mm and triple-stoichiometric 6/3 (c) Dc = 3 mm and (d) D = 4 mm

Fig. A4
figure 15

SEM-BSE images of Zr50Cu40Al10 alloy doped with gadolinium with stoichiometric 2/3 (a) 3 mm, double-stoichiometric 4/3 (b) 3 mm and triple-stoichiometric 6/3 (c) Dc = 3 mm and (d) D = 4 mm

Fig. A5
figure 16

Neutron diffraction patterns of Zr50Cu40Al10 alloy with (a) low; (b) high oxygen level. Patterns taken from each temperature regions: 1—573 K, 2—833 K (LO) and 793 K (HO), 3—953 K, 4—1113 K, 5—1273 K

Table A1 Crystal Structures of the Studied Sesquioxides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pajor, K., Rutkowski, B., Gondek, Ł. et al. The Scavenging Effect of Different Rare-Earth Elements in the Low-Purity Zr50Cu40Al10 Alloy. Metall Mater Trans A 53, 2902–2925 (2022). https://doi.org/10.1007/s11661-022-06714-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-022-06714-1

Navigation