Skip to main content

Advertisement

Log in

Phenomenal Effect of Stable (Ti, Mo)C Nano-Sized Precipitates in Retarding the Recrystallization and Grain Growth in High-Strength Ferritic Steel

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The present study demonstrates remarkable retardation of recrystallization and grain growth during sub-critical annealing of 60 pct cold-rolled ferritic steel containing Ti and Mo. The evolution of Ti–Mo–C based clusters and nano-sized (Ti, Mo)C precipitates during the course of annealing in Ti–Mo added steel was studied extensively through transmission electron microscopy and atom probe tomography. The recrystallization kinetics was evaluated from the electron back-scattered diffraction analysis. The Ti–Mo added steel exhibited just a partially recrystallized (60 pct) fine ferrite grain structure (~ 8.8 µm) even after annealing for 24 h at 873 K (600 °C). An intriguing aspect was the emergence of tiny partially coherent (Ti, Mo)C precipitates in Ti–Mo steel after 8 hours of annealing. Those precipitates effectively pinned down the dislocations and migrating ferrite boundaries, significantly retarding the recrystallization and grain growth, respectively. Grain refinement and substantial precipitation strengthening from the partially coherent (Ti, Mo)C nano-sized precipitates ensured a decent combination of strength (UTS ~ 821 MPa) and ductility (~ 16.5 pct total elongation) in the 8 hours annealed sample. Extensive yield point elongation (~ 4 pct) observed in that sample (undesired for automotive body application) can be attributed to the combined effect of shearing of nano-sized partially coherent precipitates by the dislocations along with Cottrell locking of dislocations by the solute atoms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. T. Gladman: The Physical Metallurgy of Microalloyed Steels, Institute of Materials, London, 1997.

    Google Scholar 

  2. K. Hulka: Mater. Sci. Test. Inform. Ii., 2005, vol. 473–474, pp. 91–102.

    Google Scholar 

  3. C.I. Garcia, M. Hua, K. Cho, and A.J. DeArdo: Metall. Ital., 2009, vol. 101, pp. 35–42.

    Google Scholar 

  4. Nina Fonstein: Advanced High Strength Sheet Steels, 2015.

  5. S.M. Hasan, A. Haldar, and D. Chakrabarti: Mater. Sci. Technol., 2012, vol. 28, pp. 823–8.

    CAS  Google Scholar 

  6. X. Mao, X. Huo, X. Sun, and Y. Chai: J. Mater. Process. Technol., 2010, vol. 210, pp. 1660–6.

    CAS  Google Scholar 

  7. A.C.T.M. Van Zwieten and J.H. Bulloch: Int. J. Press. Vessel. Pip., 1993, vol. 56, pp. 1–31.

    Google Scholar 

  8. H. Hou, Q. Chen, Q. Liu, and H. Dong: J. Mater. Process. Technol., 2003, vol. 137, pp. 173–6.

    CAS  Google Scholar 

  9. A. Vinogradov: J. Mater. Sci., 2007, vol. 42, pp. 1797–808.

    CAS  Google Scholar 

  10. A. Di Schino and J.M. Kenny: Mater. Lett., 2003, vol. 57, pp. 3182–5.

    Google Scholar 

  11. A. Karmakar, M. Ghosh, and D. Chakrabarti: Mater. Sci. Eng. A., 2013, vol. 564, pp. 389–99.

    CAS  Google Scholar 

  12. A. Karmakar, M. Mandal, A. Mandal, M. Basiruddin, S. Mukherjee, and D. Chakrabarti: Metall. Mater. Trans. A., 2016, vol. 47A, pp. 268–81.

    Google Scholar 

  13. K. Kamibayashi, Y. Tanabe, Y. Takemoto, I. Shimizu, and T. Senuma: ISIJ Int., 2012, vol. 52, pp. 151–7.

    CAS  Google Scholar 

  14. Y. Funakawa, T. Shiozaki, K. Tomita, T. Yamamoto, and E. Maeda: ISIJ Int., 2004, vol. 44, pp. 1945–51.

    CAS  Google Scholar 

  15. H.L. Yi, Z.Y. Liu, G.D. Wang, and D. Wu: J. Iron Steel Res. Int., 2010, vol. 17, pp. 54–8.

    CAS  Google Scholar 

  16. Y. Li, J.A. Wilson, A.J. Craven, P.S. Mitchell, D.N. Crowther, and T.N. Baker: Mater. Sci. Technol., 2007, vol. 23, pp. 509–18.

    CAS  Google Scholar 

  17. T.N. Baker, Y. Li, J.A. Wilson, A.J. Craven, and D.N. Crowther: Mater. Sci. Technol., 2004, vol. 20, pp. 720–30.

    CAS  Google Scholar 

  18. T.P. Wang, F.H. Kao, S.H. Wang, J.R. Yang, C.Y. Huang, and H.R. Chen: Mater. Lett., 2011, vol. 65, pp. 396–9.

    CAS  Google Scholar 

  19. B.K. Show, R. Veerababu, R. Balamuralikrishnan, and G. Malakondaiah: Mater. Sci. Eng. A., 2010, vol. 527, pp. 1595–604.

    Google Scholar 

  20. M.P. Rao, V.S. Sarma, and S. Sankaran: Mater. Sci. Eng. A., 2013, vol. 568, pp. 171–5.

    CAS  Google Scholar 

  21. M. Charleux, W.J. Poole, M. Militzer, and A. Deschamps: Metall. Mater. Trans. A., 2001, vol. 32A, pp. 1635–47.

    CAS  Google Scholar 

  22. V.S.A. Challa, W.H. Zhou, R.D.K. Misra, R. O’Malley, and S.G. Jansto: Mater. Sci. Eng. A., 2014, vol. 595, pp. 143–53.

    CAS  Google Scholar 

  23. M.Y. Chen, M. Gouné, M. Verdier, Y. Bréchet, and J.R. Yang: Acta Mater., 2014, vol. 64, pp. 78–92.

    CAS  Google Scholar 

  24. Z. Wang, H. Zhang, C. Guo, W. Liu, Z. Yang, X. Sun, Z. Zhang, and F. Jiang: J. Mater. Sci., 2016, vol. 51, pp. 4996–5007.

    CAS  Google Scholar 

  25. J.H. Jang, C.H. Lee, Y.U. Heo, and D.W. Suh: Acta Mater., 2012, vol. 60, pp. 208–17.

    CAS  Google Scholar 

  26. P. Gong, X.G. Liu, A. Rijkenberg, and W.M. Rainforth: Acta Mater., 2018, vol. 161, pp. 374–87.

    CAS  Google Scholar 

  27. C.Y. Chen, C.C. Chen, and J.R. Yang: Mater. Charact., 2014, vol. 88, pp. 69–79.

    CAS  Google Scholar 

  28. Z. Wang, H. Zhang, C. Guo, Z. Leng, Z. Yang, X. Sun, C. Yao, Z. Zhang, and F. Jiang: Mater. Des., 2016, vol. 109, pp. 361–6.

    CAS  Google Scholar 

  29. Z. Wang, X. Sun, Z. Yang, Q. Yong, C. Zhang, and Z. Li: Mater. Sci. Eng., 2013, vol. 573, pp. 84–91.

    CAS  Google Scholar 

  30. S. Dhara, R.K.W. Marceau, K. Wood, T. Dorin, I.B. Timokhina, and P.D. Hodgson: Mater. Sci. Eng. A., 2018, vol. 718, pp. 74–86.

    CAS  Google Scholar 

  31. Z. Wang, H. Chen, Z. Yang, and F. Jiang: Metall. Mater. Trans. A., 2018, vol. 49A, pp. 1455–9.

    Google Scholar 

  32. J. Wang, P.D. Hodgson, I. Bikmukhametov, M.K. Miller, and I. Timokhina: Mater. Des., 2018, vol. 141, pp. 48–56.

    CAS  Google Scholar 

  33. F.Z. Bu, X.M. Wang, S.W. Yang, C.J. Shang, and R.D.K. Misra: Mater. Sci. Eng., 2015, vol. 620, pp. 22–9.

    Google Scholar 

  34. I. Bikmukhametov, H. Beladi, J. Wang, P.D. Hodgson, and I. Timokhina: Acta Mater., 2019, vol. 170, pp. 75–86.

    CAS  Google Scholar 

  35. S. Mukherjee, I.B. Timokhina, C. Zhu, S.P. Ringer, and P.D. Hodgson: Acta Mater., 2013, vol. 61, pp. 2521–30.

    CAS  Google Scholar 

  36. J. Hu, L. Du, H. Xie, F. Dong, and R.D.K. Misra: Mater. Des., 2014, vol. 60, pp. 302–9.

    CAS  Google Scholar 

  37. L. Cheng, Q. Cai, B. Xie, Z. Ning, X. Zhou, and G. Li: Mater. Sci. Eng. A., 2016, vol. 651, pp. 185–91.

    CAS  Google Scholar 

  38. Y.W. Kim, S.W. Song, S.J. Seo, S. Hong, and C.S. Lee: Mater. Sci. Eng. A., 2013, vol. 565, pp. 430–8.

    CAS  Google Scholar 

  39. S. Mukherjee, I. Timokhina, C. Zhu, S.P. Ringer, and P.D. Hodgson: J. Alloys Compd., 2017, vol. 690, pp. 621–32.

    CAS  Google Scholar 

  40. I. Timokhina, M.K. Miller, J. Wang, H. Beladi, P. Cizek, and P.D. Hodgson: JMADE., 2016, vol. 111, pp. 222–9.

    CAS  Google Scholar 

  41. L. Cheng, Y. Chen, Q. Cai, W. Yu, G. Han, E. Dong, and X. Li: Mater. Sci. Eng. A., 2017, vol. 698, pp. 117–25.

    CAS  Google Scholar 

  42. N. Kamikawa, Y. Abe, G. Miyamoto, and Y. Funakawa: ISIJ Int., 2014, vol. 54, pp. 212–21.

    CAS  Google Scholar 

  43. K. Zhang, Z. Li, Z. Wang, X. Sun, and Q. Yong: J. Mater. Res., 2016, vol. 31, pp. 1254–63.

    CAS  Google Scholar 

  44. C. Chen, J. Yang, C. Chen, and S. Chen: Mater. Charact., 2016, vol. 114, pp. 18–29.

    CAS  Google Scholar 

  45. C. Chen, S. Chen, C. Chen, and J. Yang: Mater. Sci. Eng. A., 2015, vol. 634, pp. 123–33.

    CAS  Google Scholar 

  46. Y. Huang, A. Zhao, X. Wang, X. Wang, J. Yang, J. Han, and F. Yang: Met. Mater. Trans. A., 2016, vol. 47A, pp. 450–60.

    Google Scholar 

  47. J. Wang, M. Weyland, I. Bikmukhametov, M.K. Miller, P.D. Hodgson, and I. Timokhina: Scr. Mater., 2019, vol. 160, pp. 53–7.

    CAS  Google Scholar 

  48. N. Kamikawa, K. Sato, G. Miyamoto, M. Murayama, N. Sekido, K. Tsuzaki, and T. Furuhara: Acta Mater., 2015, vol. 83, pp. 383–96.

    CAS  Google Scholar 

  49. Y.W. Kim, J.H. Kim, S.-G. Hong, and C.S. Lee: Mater. Sci. Eng. A., 2014, vol. 605, pp. 244–52.

    CAS  Google Scholar 

  50. D. Chakrabarti, C. Davis, and M. Strangwood: Mater. Charact., 2007, vol. 58, pp. 423–38.

    CAS  Google Scholar 

  51. W. Sha, L. Chang, G.D.W. Smith, L. Cheng, and E.J. Mittemeijer: Surf. Sci., 1992, vol. 266, pp. 416–23.

    CAS  Google Scholar 

  52. J. Takahashi, T. Tarui, and K. Kawakami: Ultramicroscopy., 2009, vol. 109, pp. 193–9.

    CAS  Google Scholar 

  53. E.A. Marquis and J.M. Hyde: Mater. Sci. Eng. R., 2010, vol. 69, pp. 37–62.

    Google Scholar 

  54. A. Biswas, D.J. Siegel, C. Wolverton, and D.N. Seidman: Acta Mater., 2011, vol. 59, pp. 6187–204.

    CAS  Google Scholar 

  55. A. Biswas, D.J. Siegel, and D.N. Seidman: Acta Mater., 2014, vol. 75, pp. 322–36.

    CAS  Google Scholar 

  56. K.R. Gadelrab, G. Li, and M. Chiesa: J. Mater. Res., 2012, vol. 27, pp. 1573–9.

    CAS  Google Scholar 

  57. ASTM Int. and ASTM: Astm, 2009, pp. 1–27.

  58. G. Jha, A. Haldar, M.S. Bhaskar, and T. Venugopalan: Mater. Sci. Technol., 2011, vol. 27, p. 1131.

    CAS  Google Scholar 

  59. F.J. Humphreys: J. Mater. Sci., 2001, vol. 36, pp. 3833–54.

    CAS  Google Scholar 

  60. A. Sarkar, S. Sanyal, T.K. Bandyopadhyay, and S. Mandal: Mater. Charact., 2017, vol. 134, pp. 213–24.

    CAS  Google Scholar 

  61. H.W. Yen, C.Y. Huang, and J.R. Yang: Scr. Mater., 2009, vol. 61, pp. 616–9.

    CAS  Google Scholar 

  62. M.F. Ashby and R. Ebeling: Trans. Metall. Soc. AIME., 1966, vol. 236, pp. 1396–403.

    CAS  Google Scholar 

  63. J.G. Cowie and F.R. Tuler: Mater. Sci. Eng. A., 1991, vol. 141, pp. 23–37.

    Google Scholar 

  64. M.K. Miller and M.G. Burke: J. Nucl. Mater., 1992, vol. 195, pp. 68–82.

    CAS  Google Scholar 

  65. S. Zajac: Mater. Sci. Forum., 2005, vol. 500–501, pp. 75–86.

    Google Scholar 

  66. P. Klugkist and C. Herzig: Phys. Stat. Sol., 1995, vol. 148, pp. 413–21.

    CAS  Google Scholar 

  67. S. Murphy and J.A. Whiteman: Met. Sci. J., 1970, vol. 4, pp. 58–62.

    CAS  Google Scholar 

  68. H.W. Yen, P.Y. Chen, C.Y. Huang, and J.R. Yang: Acta Mater., 2011, vol. 59, pp. 6264–74.

    CAS  Google Scholar 

  69. J.H. Jang, C. Lee, H.N. Han, H.K.D.H. Bhadeshia, D. Suh, J.H. Jang, C. Lee, H.N. Han, H.K.D.H. Bhadeshia, and D. Suh: Mater. Sci. Technol., 2013, vol. 29, pp. 1074–9.

    CAS  Google Scholar 

  70. D. Huang, J. Yan, and X. Zuo: Mater. Charact., 2019, vol. 155, p. 109786.

    CAS  Google Scholar 

  71. J. Seol, S. Na, B. Gault, J. Kim, J. Han, C. Park, and D. Raabe: Sci. Rep., 2017, vol. 7, pp. 1–9.

    CAS  Google Scholar 

  72. T. Kresse, C. Borchers, and R. Kirchheim: Scr. Mater., 2013, vol. 69, pp. 690–3.

    CAS  Google Scholar 

  73. O.Y. Kontsevoi, A.J. Freeman, and G.B. Olson: in Proc. 30th Annu. SRG Meet. Evanston.

  74. D. Edstrom, D.G. Sangiovanni, L. Hultman, I. Petrov, J.E. Greene, and V. Chirita: Acta Mater., 2018, vol. 144, pp. 376–85.

    Google Scholar 

  75. Z. Xiong, I. Timokhina, and E. Pereloma: Prog. Mater. Sci., 2021, vol. 118, p. 100764.

    CAS  Google Scholar 

  76. A.J. Ardell: Metall. Trans. A., 1985, vol. 16, pp. 2131–65.

    Google Scholar 

  77. G.E. Dieter: Mech. Metall. SI Metr. Ed. McGraw-Hill B. Co, 1962, vol. 273.

  78. E.O. Hall: Yield Point Phenomena in Metals and Alloys, Plenum Press, New York, 1970.

    Google Scholar 

  79. A. Zhu: Acta Mater., 1997, vol. 45, pp. 4213–23.

    CAS  Google Scholar 

  80. D. Thevenet, M. Mliha-Touati, and A. Zeghloul: Mater. Sci. Eng. A., 1999, vol. 266, pp. 175–82.

    Google Scholar 

  81. Y.H. Zhao, X.Z. Liao, Z. Jin, R.Z. Valiev, and Y.T. Zhu: Acta Mater., 2004, vol. 52, pp. 4589–99. https://doi.org/10.1016/j.actamat.2004.06.017.

    Article  CAS  Google Scholar 

  82. P. Taylor, G.K. Williamson, and R.E. Smallman III.: Philos. Mag., 1956, vol. 1, pp. 34–46.

    Google Scholar 

Download references

Acknowledgments

The authors sincerely thank Research & Development, Tata Steel, for supplying the material and Research Infrastructure Development Grant (SGDRI-2015) received from SRIC, IIT Kharagpur. The authors acknowledge the experimental support received from the Department of Metallurgical and Materials Engineering and Central Research Facility, IIT Kharagpur and Bhabha Atomic Research Centre.

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anish Karmakar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted August 29, 2021; accepted November 12, 2021.

Appendix

Appendix

1.1 Calculation of Dislocation Density from X-ray Diffraction

The dislocation density was calculated from x-ray diffraction data using modified Williamson–Hall method, and the expression is given by Eq. [a1][81,82]:

$$ \rho = \frac{{2\sqrt 3 < \varepsilon^{2} >^{\frac{1}{2}} }}{(D \times b)} $$
(a1)

where \(< \varepsilon^{2} >^{\frac{1}{2}}\) and D are the micro-strain and crystallite size, respectively, which were calculated from the intercept and slope of the Williamson–Hall plot, and b is the Burgers vector. In our study the calculated dislocation density of S1 steel varied in the range of 1.3 × 1015 m-2 to 2.2 × 1015 m-2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Modak, P., Mandal, A., Gupta, R. et al. Phenomenal Effect of Stable (Ti, Mo)C Nano-Sized Precipitates in Retarding the Recrystallization and Grain Growth in High-Strength Ferritic Steel. Metall Mater Trans A 53, 689–705 (2022). https://doi.org/10.1007/s11661-021-06550-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-021-06550-9

Navigation