Skip to main content
Log in

Enhancing the Intergranular Corrosion Resistance of the Al–Mg–Si Alloy with Low Zn Content by the Interrupted Aging Treatment

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The intergranular corrosion (IGC) resistance of the Al–Mg–Si alloy with low Zn addition treated by the interrupted aging treatment (T6I6) was investigated. The IGC results of the Al–Mg–Si alloy show that IGC resistance is enhanced by T6I6 aging treatment. The EIS results reveal that the T6I6-treated Al–Mg–Si alloy has lower double layer capacitance and higher charge transfer resistance than the T6-treated alloy. The superior IGC performance of the T6I6-treated alloy may be attributed to the finer and more densely distributed precipitates within the grains, smaller and discretely distributed precipitates along the grain boundaries and narrower precipitate-free zones (PFZs) compared to the T6-treated alloy.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. G.A. Edwards, K. Stiller, G.L. Dunlop, and M.J. Couper: Acta Mater., 1998, vol. 46, pp. 3893–904. .

    Article  CAS  Google Scholar 

  2. S. Pogatscher, H. Antrekowitsch, H. Leitner, T. Ebner, and P.J. Uggowitzer: Acta Mater., 2011, vol. 59, pp. 3352–63. .

    Article  CAS  Google Scholar 

  3. J. Hirschab: Acta Mater., 2013, vol. 61, pp. 818–43. .

    Article  CAS  Google Scholar 

  4. G. Svenningsen, M.H. Larsen, J.C. Walmsley, J.H. Nordlien, and K. Nisancioglu: Corros. Sci., 2006, vol. 48, pp. 1528–43. .

    Article  CAS  Google Scholar 

  5. F. Eckermann, T. Suter, P.J. Uggowitzer, A. Afseth, and P. Schmutz: Electrochim. Acta., 2008, vol. 54, pp. 844–55. .

    Article  CAS  Google Scholar 

  6. M. de Hass and JTh.M. De Hosson: Scripta Mater., 2001, vol. 44, pp. 281–6. .

    Article  Google Scholar 

  7. N. Birbilis and R.G. Buchheit: J. Electrochem. Soc., 2005, vol. 152, pp. 141–51. .

    Article  CAS  Google Scholar 

  8. H. Li, P. Zhao, Z. Wang, Q. Mao, B. Fang, R. Song, and Z. Zheng: Corros. Sci., 2016, vol. 107, pp. 113–22. .

    Article  CAS  Google Scholar 

  9. X. Sheng, W. Yang, M. Wang, Z. Li, J. Gong, and C. Peng: Trans. Nonferrous Metals Soc. China., 2012, vol. 22, pp. 2174–81. .

    Article  CAS  Google Scholar 

  10. H. Zhan, J.M.C. Mol, F. Hannour, L. Zhuang, H. Terryn, and J.H.W. de Wit: Mater. Corros., 2008, vol. 59, pp. 670–5. .

    Article  CAS  Google Scholar 

  11. X. Sheng, W. Yang, C. Xia, J. Gong, M. Wang, Z. Li, and Q. Zhang: Trans. Nonferrous Metals Soc. China., 2012, vol. 22, pp. 1276–82. .

    Article  CAS  Google Scholar 

  12. F.L. Zeng, Z.L. Wei, J.F. Li, C.X. Li, X. Tan, Z. Zhang, and Z. Zheng: Trans. Nonferrous Metals Soc. China., 2011, vol. 21, pp. 2559–67. .

    Article  CAS  Google Scholar 

  13. A.K. Bhattamishra and K. Lal: Mater. Des., 1997, vol. 18, pp. 25–8. .

    Article  CAS  Google Scholar 

  14. S. Taito, S. Wenner, E. Osmundsen, C.D. Marioara, S.J. Andersen, J. Royset, W. Lefebvre, and R. Holmestad: Phil. Mag., 2014, vol. 94, pp. 2410–25. .

    Article  CAS  Google Scholar 

  15. M.X. Guo, J.Q. Du, C.H. Zheng, J.S. Zhang, and L.Z. Zhuang: J. Alloy. Compd., 2019, vol. 778, pp. 256–70. .

    Article  CAS  Google Scholar 

  16. X. Zhang, X. Zhou, and J. Nilsson: Corrosion., 2019, vol. 150, pp. 100–9. .

    Article  CAS  Google Scholar 

  17. R. Dif, B. Bès, J.C. Ehrstro, C. Sigli, J.T. Warner, P. Lassince, and H. Ribes: Mater. Sci. Forum., 2000, vol. 331–337, pp. 1613–8. .

    Article  Google Scholar 

  18. T.D. Burleigh, E. Ludwiczak, and R.A. Petri: Corrosion., 1995, vol. 51, pp. 50–5. .

    Article  CAS  Google Scholar 

  19. Z. Wang, H. Li, F. Miao, W. Sun, B. Fang, R. Song, and Z. Zheng: Mater. Sci. Eng. A., 2014, vol. 590, pp. 267–73. .

    Article  CAS  Google Scholar 

  20. G. Svenningsen, J.E. Lein, A. Bjørgum, J.H. Nordlien, Y. Yu, and K. Nisancioglu: Corros. Sci., 2006, vol. 48, pp. 226–42. .

    Article  CAS  Google Scholar 

  21. A.P. Sekhar, A.B. Mandal, and D. Das: J. Market. Res., 2020, vol. 9, pp. 1005–24. .

    CAS  Google Scholar 

  22. J. Buha, R.N. Lumley, and A.G. Crosky: Metall. Mater. Trans. A., 2006, vol. 37A, pp. 3119–30. .

    Article  CAS  Google Scholar 

  23. J. Buha, R.N. Lumley, A.G. Crosky, and K. Hono: Acta Mater., 2007, vol. 55, pp. 3015–24. .

    Article  CAS  Google Scholar 

  24. R.N. Lumley, I.J. Polmear, and A.J. Morton: Metal Sci. J., 2003, vol. 19, pp. 1483–90. .

    CAS  Google Scholar 

  25. D.D. Risanti, M. Yin, and S.V.D. Zwaag: Mater. Sci. Eng. A., 2009, vol. 523, pp. 99–111. .

    Article  CAS  Google Scholar 

  26. E. Ghali: Corrosion Resistance of Aluminum and Magnesium Alloys. 2nd ed. Wiley, Hoboken, 2013, pp. 1–2.

    Google Scholar 

  27. T. Kosec, D.K. Merl, and I. Milošev: Corros. Sci., 2008, vol. 50, pp. 1978–97. .

    Article  CAS  Google Scholar 

  28. A. Kocijan, D.K. Merl, and M. Jenko: Corros. Sci., 2011, vol. 53, pp. 776–83. .

    Article  CAS  Google Scholar 

  29. B. Hirschorn, M.E. Orazem, B. Tribollet, V. Vivier, I. Frateur, and M. Musianet: Electrochim. Acta., 2010, vol. 55, pp. 6218–27. .

    Article  CAS  Google Scholar 

  30. U. Trdan and J. Grum: Corros. Sci., 2014, vol. 82, pp. 328–38. .

    Article  CAS  Google Scholar 

  31. O. Gharbi, M.T.T. Tran, B. Tribollet, M. Turmine, and V. Vivier: Electrochim. Acta., 2020, vol. 343, p. 136109. .

    Article  CAS  Google Scholar 

  32. Z. Davoodi: Corros. Sci., 2016, vol. 107, pp. 133–44. .

    Article  CAS  Google Scholar 

  33. X. Zhang, X. Zhou, T. Hashimoto, and B. Liu: Mater. Charact., 2017, vol. 130, pp. 230–6. .

    Article  CAS  Google Scholar 

  34. S. Zhu, Z. Li, L. Yan, X. Li, S. Huang, H. Yan, Y. Zhang, and B. Xiong: Mater. Charact., 2018, vol. 145, pp. 258–67. .

    Article  CAS  Google Scholar 

  35. J.D. Daborenea and A. Conde: Br. Corros. J., 2013, vol. 35, pp. 48–53. .

    Article  Google Scholar 

  36. H. Liu, R.X. Guo, Y. Liu, G.E. Thompson, and Z. Liu: Surf. Coat. Technol., 2012, vol. 206, pp. 3350–9. .

    Article  CAS  Google Scholar 

  37. V.M.C.A. Oliveira, C. Aguiar, A.M. Vazquez, A. Robin, and M.J.R. Barboza: Corros. Sci., 2014, vol. 88, pp. 317–27. .

    Article  CAS  Google Scholar 

  38. M. Keddam, C. Kuntz, H. Takenouti, D. Schustert, and D. Zuili: Electrochim Acta., 1997, vol. 42, pp. 87–97. .

    Article  CAS  Google Scholar 

  39. J.C. Lin, H.L. Liao, W.D. Jehng, C.H. Chang, and S.L. Lee: Corros. Sci., 2006, vol. 48, pp. 3139–56. .

    Article  CAS  Google Scholar 

  40. L. Ding, Y. Weng, S. Wu, R.E. Sanders, and Q. Liu: Mater. Sci. Eng. A., 2016, vol. 651, pp. 991–8. .

    Article  CAS  Google Scholar 

  41. T. Saito, F.J. Ehlers, W. Lefebvre, D.H. Maldonado, R. Bjørge, C.D. Marioara, S.J. Andersen, and R. Holmestad: Acta Mater., 2014, vol. 78, pp. 245–53. .

    Article  CAS  Google Scholar 

  42. M.X. Guo, G. Sha, L.Y. Cao, W.Q. Liu, J.S. Zhang, and L.Z. Zhuang: Mater. Chem. Phys., 2015, vol. 162, pp. 15–9. .

    Article  CAS  Google Scholar 

  43. M.X. Guo, Y. Zhang, X.K. Zhang, J.S. Zhang, and L.Z. Zhuang: Mater. Sci. Eng. A., 2016, vol. 669, pp. 20–32. .

    Article  CAS  Google Scholar 

  44. C. Wolverton: Acta Mater., 2007, vol. 55, pp. 5867–72. .

    Article  CAS  Google Scholar 

  45. S. Zhu, Z. Li, L. Yan, X. Li, S. Huang, H. Yan, Y. Zhang, and B. Xiong: J. Alloy. Compd., 2019, vol. 773, pp. 496–502. .

    Article  CAS  Google Scholar 

  46. H. Zhong, P.A. Rometsch, L. Cao, and Y. Estrin: Mater. Sci. Eng. A., 2016, vol. 651, pp. 688–97. .

    Article  CAS  Google Scholar 

  47. A. Lutz, L. Malet, J. Dille, L.H. De Almeida, L. Lapeire, K. Verbeken, S. Godet, H. Terryn, and I. De Graeve: J. Alloy. Compd., 2019, vol. 794, pp. 435–42. .

    Article  CAS  Google Scholar 

  48. V. Guillaumin and G. Mankowski: Corros. Sci., 2000, vol. 42, pp. 105–25. .

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Key R&D Program of China (Project No. 2016YFB0300901), the Laboratory stability support funding from National Key Laboratory of Science and Technology for National Defense on High-Strength Structural Materials of China, and the National Science Foundation of China (Project No. 51705539). The authors would like to take this opportunity to express their appreciation.

Conflict of interest

We declare that we have no conflicts of interest related to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaobin Guo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted March 9, 2021, accepted August 9, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, X., Deng, Y., Pan, Q. et al. Enhancing the Intergranular Corrosion Resistance of the Al–Mg–Si Alloy with Low Zn Content by the Interrupted Aging Treatment. Metall Mater Trans A 52, 4907–4921 (2021). https://doi.org/10.1007/s11661-021-06433-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-021-06433-z

Navigation